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Abstract Collaborative filtering (CF) is a widely used technique to guide the users of
web applications towards items that might interest them. CF approaches are severely
challenged by the characteristics of user-itempreferencematrices,which are often high
dimensional and extremely sparse.Recently, severalworks have shown that incorporat-
ing information fromsocial networks—such as friendship and trust relationships—into
traditional CF alleviates the sparsity related issues and yields a better recommenda-
tion quality, in most cases. More interestingly, even with comparable performances,
social-based CF is more beneficial than traditional CF; the former makes it possible to
provide recommendations for cold start users. In this paper, we propose a novel model
that leverages information from social networks to improve recommendations. While
existing social CF models are based on popular modelling assumptions such as Gaus-
sian or Multinomial, our model builds on the von Mises–Fisher assumption which
turns out to be more adequate, than the aforementioned assumptions, for high dimen-
sional sparse data. Setting the estimate of the model parameters under the maximum
likelihood approach, we derive a scalable learning algorithm for analyzing data with
our model. Empirical results on several real-world datasets provide strong support for
the advantages of the proposed model.
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1 Introduction

Collaborative filtering (CF) is an important recommendation technique, which aims
to guide the users of web applications towards items that may interest them, based
on previous user preferences. CF has been adopted by many real-world applications
such as Amazon, YouTube and Netflix. CF approaches can roughly be divided into
two main categories:

Memory-based approaches: are based on computing similarities amongusers and/or
items. User-based collaborative filtering (Bobadilla et al. 2013) makes recommenda-
tions to users according to their k nearest neighbors. Item-based collaborative filtering
(Sarwar et al. 2001) provides users with recommendations according to the k nearest
neighbors of items which they enjoyed in the past.

Model-based approaches: aim to fit a model to the user-item matrix in order to
capture the hidden preference features and attributes of users and items, respectively.
They then predict unknown preferences according to the fitted model. Among such
approaches we can cite those based on clustering (Ungar and Foster 1998; Salah et al.
2016a), matrix factorization (MF) (Sarwar et al. 2000; Koren et al. 2009; Delporte
et al. 2013) and probabilistic models (Barbieri et al. 2014).

Although the aforementioned approaches, often denoted as traditional CF meth-
ods, constitute an important contribution to CF and can offer a good recommendation
accuracy, these techniques are still severely challenged by the characteristics of col-
laborative filtering data, i.e., high dimensionality and sparsity. Over the last few years,
with the advent of social networks, social-based collaborative filtering has emerged as
a new promising technique to alleviate the sparsity related issues. Such an approach
consists in using information from online social networks—usually friendship and/or
trust information—to improve recommendations. More intuitively, social-based CF
approaches are based on the assumption that, for making a good recommendation, not
only the user’s expressed preferences are important, but also the user’s social inter-
actions. This is natural, since in real life people often turn to their friends to ask for
a nice movie to watch, an interesting book to read, a good restaurant, etc. By taking
into account this real-life behaviour, social-based CF approaches make more realis-
tic recommendations and are, therefore, expected to offer better performances than
traditional CF methods. More interestingly, even with comparable recommendation
accuracy, social-basedmethods aremore beneficial than traditional approaches, in that
they can make recommendations for cold start users—who have expressed very few
preferences or even none at all. This is possible by exploiting the social interactions
of cold-start users.

Apart frombeinghighdimensional and sparse,CFdata are also directional in nature.
Let us consider the cosine similarity andPearsonCorrelationCoefficient (PCC),which
are widely used measures in CF. The above two, or their variants, have been found
to be superior to several other measures, such as euclidean distortions, to assess the
similarities between users or items (Sarwar et al. 2001; Linden et al. 2003; Liu et al.
2014). Note that both measures focus on the directions of data vectors, or in other
words the similarity between two objects—users or items—is measured relative to the
angle between them. The success of these measures in CF suggests that the direction
of a user/item preference-vector is relevant, not its magnitude.
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1220 A. Salah, M. Nadif

It is worth noting that both the above measures are exactly the scalar product
between objects lying on the surface of a unit-hypersphere, i.e., objects of unit length
(L2 norm). This is straightforward for the cosine similarity, now let us look at the
PCC, between two users represented by the column vectors x and y in R

d , given

by: PCC(x, y) = (x−x̄)�(y−ȳ)
‖x−x̄‖‖y−ȳ‖ , where x̄ and ȳ are two vectors of the appropriate

dimensions, such that x̄1 = · · · = x̄d = ∑
j x j/d and ȳ1 = · · · = ȳd = ∑

j y j/d.

Let x′ = x−x̄
‖x−x̄‖ and y′ = y−ȳ

‖y−ȳ‖ , then the PCC between x and y is exactly the scalar
product (cosine similarity) between the two unit-length vectors x′ and y′.

Hence, fromaprobabilistic perspective using the cosine andPCCmeasures is equiv-
alent to assuming that CF data are distributed on the surface of a unit-hypersphere,
and to measuring the similarities between objects—relative to the angle between
them—using the scalar product. The success of the above directional measures in
CF constitutes, therefore, empirical evidence that CF data possesses intrinsic direc-
tional characteristics, which should be taken into account to reach better performances.
In other words, it seems better to model CF data as directional1 data distributed on
the surface of a unit-hypersphere, i.e., L2 normalized data, (Mardia and Jupp 2009;
Banerjee et al. 2005).

Existing social CF models are, however, based on popular modelling assumptions,
such as Gaussian or Multinomial, which are inadequate for directional data lying on
the surface of a unit-hypersphere. Hence, it seems natural to question whether it is pos-
sible to leverage both the users’ social interactions and the directional properties of CF
data, simultaneously. In this paper, we provide an answer to this question: we develop
a novel social CF model which is based on the von Mises–Fisher (vMF) distribution,
which arises naturally for directional data lying on the surface of a unit-hypersphere.
The proposed model successfully integrates a directional measure, namely the cosine
similarity, into a social CF model. This makes it possible to achieve a high recommen-
dation accuracy as illustrated in our experiments. To the best of our knowledge the
work we present is the first social-based CF approach that accounts for the directional
characteristics of collaborative filtering data.

The remainder of the paper is organized as follows. Section 2 is devoted to present
related work. In Sect. 3, we review the vMFmixture model, then we propose to extend
the above model to account for social interactions among users and derive a scalable
Generalized Expectation-Maximization (GEM) algorithm for inference and parameter
estimation (Sect. 4). Finally, we evaluate our contribution on real data sets.

2 Related work

Theworkwepresent here is related to twomain topics, namelyCFapproaches account-
ing for social-network information, andvMFmixturemodels fromdirectional statistics
(Mardia and Jupp 2009; Banerjee et al. 2005).

Over the last few years, several social-based collaborative filtering approaches have
been proposed, most of which are based on Probabilistic Matrix Factorization (PMF)

1 In the rest of this paper we treat “direction data” and “L2 normalized data” as synonyms.
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(Ma et al. 2008, 2009; Jamali and Ester 2010; Ma et al. 2011). The key idea behind
these approaches is to make the latent preference factor of each user close to that of
his/her direct neighbors in the user–user social graph, so as to capture the influence
between friends.

Ma et al. (2008) built aMFmodel that connects the user-itempreferencematrixwith
the user–user social graph through a shared user latent factor.Ma et al. (2009) proposed
an approach that fuses a MF model on the user-item matrix with a MF on the user–
user graph, then predicts unknown preferences by combining the ratings resulting from
bothmodels. Based on the aboveworks, Jamali and Ester (2010) proposedSocialMF
anothermatrix factorization-basedmethod that accounts for trust propagation.Maet al.
(2011) proposed to add a regularization term into the traditional PMF (Salakhutdinov
and Mnih 2008) so as to bring the latent factors of socially connected users closer to
each other. Yang et al. (2013) developed three trust MF-based models that consider
different aspects of trust information. The first variant reflects that the preference of
a user for an item is influenced by the preferences of his/her trustees on that item,
the second reflects that the behaviour of a user will influence that of his/her trusters
and the third is a combination of the above two during the prediction phase. More
recently, Guo et al. (2015) presented TrustSVD an extension of the well known
SVD++ (Koren 2008) method that accounts for social trust information. Chaney et al.
(2015) proposed Social Poisson Factorization. In addition to learn the user and item
latent factors, as in traditional MF, this method introduces a third latent factor that
reflects how much each user is influenced by his/her direct neighbors in the social
network. Then, the preference of a user for an item is explained by combining the
three factors above.

All these efforts demonstrated the importance of considering information from
social networks in CF. Nevertheless, existing approaches to social CF are based on
popular modelling assumptions such as Gaussian, Multinomial or Poisson, and there-
fore do not account for the aforementioned directional characteristics of CF data. In
this paper, we aim to address this limitation by building a novel model that leverages
the social interactions among users as well as the directional properties of CF data.
More precisely, we rely on a mixture of von Mises–Fisher distributions.

ThevMFdistribution is a continuous probability distribution, on a unit-hypersphere,
from directional statistics (Mardia and Jupp 2009). It focuses on the directions of
objects and measures the distance between them using the cosine similarity. Most of
the earlier works using vMF distributions focused on low dimensional data, i.e., 2- or
3-dimensional data (McLachlan and Peel 2004), due to the difficulties related to the
estimation of the concentration parameter kappa, which involves the inversion of a
ratio of Bessel functions. A notable contribution is the mixture of vMF distributions
movMFs (Banerjee et al. 2005) for clustering high dimensional sparse data. Banerjee
et al. (2005) derived an EM-based solution for inference and parameter estimation,
and they proposed an accurate approximation to estimate the concentration parameter
κ for a high dimensional vMF distribution. Since this contribution, different vMF-
based models have been proposed in the context of high dimensionality. For instance,
Reisinger et al. (2010) proposed a topic model based on a mixture of vMF distri-
butions. More recently, for text data clustering, Gopal and Yang (2014) proposed a
full Bayesian formulation of movMFs and developed two novel variants of movMFs,
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namely hierarchical and temporal. Le and Lauw (2014) developed a vMF-basedmodel
for the task of semantic visualization, i.e., jointly modeling topics and visualization, of
text data. Salah et al. (2016b, c) proposed the block von Mises–Fisher mixture model
and derived several vMF-based algorithms for co-clustering document-term matrices.

Notation Matrices are denoted with boldface uppercase letters and vectors with
boldface lowercase letters. The L2 norm is denoted by ‖.‖. The (d−1) dimensional unit
sphere embedded inRd is denoted by Sd−1. Data is represented by a matrixX = (xi j )
of size n×d, xi j ∈ R, its i th row (user) is represented by a vector xi = (xi1, . . . , xid)�,
where � denotes the transpose. The partition of the set of rows I into g clusters
can be represented by a classification matrix Z of elements zih in {0, 1} satisfying∑g

h=1 zih = 1. The notation z = (z1, . . . , zn)�, where zi ∈ {1, . . . , g} represents the
cluster label of i , will also be used. In the same way, the fuzzy classification matrix of
I is denoted by Z̃ = (z̃ih) where z̃ih ∈ [0, 1], satisfying ∑g

h=1 z̃ih = 1, for all i in I.

3 Preliminaries

A d dimensional vMF (d-vMF) distribution, i.e., d ≥ 2 is a continuous probability
distribution on the surface of a unit-hypersphereSd−1. The probability density function
of a data point xi ∈ S

d−1, following a d-vMF distribution, is given by:

f (xi |μ, κ) = cd(κ) expκμ�xi , (1)

whereμ is the mean direction or centroid parameter and κ is the concentration param-
eter, such that ‖μ‖ = 1 and κ ≥ 0. The normalization term cd(κ) is equal to

cd(κ) = κ
d
2 −1

(2π)
d
2 I d

2 −1
(κ)

where Ir (κ) represents the modified Bessel function of the

first kind and order r . In the vMF distribution the parameter κ controls the concentra-
tion of data points xi , following (1), around the mean direction μ. For more details on
the vMF distribution, we recommend the book of Mardia and Jupp (2009).

In the mixture model context, the data points x1, . . . , xn are supposed to be i.i.d.
and generated from amixture of g vMF distributions with a set of unknown parameters
Θ . The log-likelihood function of this mixture takes the following form

L(Θ;X) =
∑

i

log

(
∑

h

αh fh(xi |μh, κh)

)

, (2)

where Θ = {μ1, . . . ,μg, α1, . . . , αg, κ1, . . . , κg}, μh and κh represent the centroid
and the concentration parameters of the hth component, respectively. Each parameter
αh denotes the proportion of points xi generated from the hth component, such that∑

h αh = 1 and αh > 0, ∀h ∈ {1, . . . , g}. As the optimization of the above function
is intractable, we rely on the “complete” data likelihood given by

L(μ,α, κ;X, z) =
∏

i

αzi (cd(κzi ) exp
κzi μ

�
zi
xi ), (3)
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where z is the latent variable which is assumed to be known, i.e., zi = h if xi is gen-
erated from the hth component. Using the classification matrix Z, the corresponding
complete data log-likelihood takes the following form:

Lc(Θ;X,Z) =
∑

h

z.h logαh +
∑

h

z.h log cd(κh) +
∑

i,h

zihκhμ
�
h xi

where z.h denotes the cardinality of cluster h.
As the latent variable z is unknown in practice, the authors in Banerjee et al. (2005)

proposed to use the EM algorithm (Dempster et al. 1977) to obtain the maximum
likelihood estimates for the parametersΘ . The E-step finds the conditional expectation
of the missing variable z given the current estimated parametersΘ(t) and the observed
data, i.e., z̃ih = E(zih = 1|xi ,Θ(t)). The M-step finds the new parameters Θ(t+1)

maximizing the expectation of the complete data log-likelihood (4) subject to the
constraints

∑
h αh = 1, ‖μh‖ = 1 and κh > 0. This procedure leads to the soft vMF

clustering algorithm (Banerjee et al. 2005), denoted in this paper as movMF.
Note that if we impose the following constraints on the parameters: equality of

proportions α1 = · · · = αh and concentration κ1 = · · · = κh parameters, the
maximization of Lc(Θ;X,Z) reduces to the maximization of the spherical k-means
criterion (Dhillon and Modha 2001; Banerjee et al. 2005)

∑

i,h

zihκhμ
�
h xi =

∑

i,h

zih < μh, xi >=
∑

i,h

zih cos(δih)

where <,> denotes the scalar product and δih is the angle between vectors xi and
μh . So, when relying on a vMF mixture model, the cosine similarity is underlying. In
fact, the well known spherical k-means algorithm, using the cosine similarity instead
of euclidean distortions, arises as special case from the movMF algorithm, considered
in this paper, when we enforce some restrictive constraints (Banerjee et al. 2005).

4 Social regularized von Mises–Fisher mixture model

We now propose Social-movMFs a novel model that leverages, simultaneously, the
benefits of the vMF modeling assumption and the use of social network information
so as to alleviate the sparsity related issues in CF. Specifically, we propose to extend
the mixture of vMF distribution movMFs, presented above, to account for the social
interactions among users. The intuition behind our model is to bring the distributions
over clusters of socially connected users closer to each other in order to capture the
influences between friends. To this end, inspired by previous works onmanifold learn-
ing (Zhu and Lafferty 2005; Belkin et al. 2006; Cai et al. 2008;Mei et al. 2008; He et al.
2011), we propose to smooth the posterior probabilities z̃ih based on the user–user
social network. Posterior smoothness can be achieved by using any adequate function,
here we adopt the quadratic energy function—also denoted as the graph harmonic
function—(Zhu and Lafferty 2005) defined as follows in our case
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1224 A. Salah, M. Nadif

R(T ) = 1

2

∑

h

∑

i

∑

j

τi j (z̃ih − z̃ jh)
2 (4)

where T = (τi j ) is the adjacency matrix of the user–user social graph, i.e., τi j = 1
if users i and j are socially connected and τi j = 0 otherwise. The above function is
minimized if all socially connected users exhibit similar posterior distributions over
clusters. Recall that our purpose is to force socially connected users to exhibit similar
distributions over clusters. This objective can be achieved by regularizing the log-
likelihood (2) by function (4), which yields the following regularized log-likelihood
function:

Lr (Θ;X,T ) = L(Θ;X) − λR(T ) (5)

where R(T ) plays the role of the regularization term that enforces smoothness of
the posterior probabilities on the social network, and λ is the regularization param-
eter which controls the extent of regularization. Observe that the complete data
log-likelihood (4) of movMFs arises from (5) as a special case when λ = 0. The
corresponding regularized complete data log-likelihood can be obtained by substitut-
ing Lc(Θ;X,Z) for L(Θ;X) in (5).

It isworth noting that the regularized log-likelihood (5) is penalized byuserswho are
socially connected and who exhibit substantially different distributions over clusters.
Thus, as opposed to themovMFsmodel, Social-movMFs accounts for the interactions
among users.

4.1 Maximum likelihood estimates

In order to obtain the maximum likelihood estimates of the model parameters we rely
on the Generalized EM algorithm (Dempster et al. 1977; McLachlan and Krishnan
2007). The E-step is to estimate the posterior probabilities z̃ih , given the current
estimated parameters Θ(t) and the observed data X, as follows:

z̃ih = E(zih = 1|xi ,Θ(t)) ∝ α
(t)
h fh(xi |μ(t)

h , κ
(t)
h ). (6)

TheM-step finds the new parametersΘ(t+1) maximizing or increasing the expectation
of the complete data log-likelihood which is given by

Q(Θ,Θ(t)) = E

(
Lc(Θ;X,Z)|X,Θ(t)

)

=
∑

i,h

z̃.h logαh +
∑

h

z̃.h log cd(κh) +
∑

i,h

z̃ihκhμ
�
h xi (7)

where z̃.h = ∑
i z̃ih . The above optimization scheme yields the movMF algorithm pro-

viding parameter estimation for the classical movMFs model (Banerjee et al. 2005).
In our case, the purpose is to take into account social interactions among users. Thus,
instead ofmaximizing expression (7),wemaximize the following regularized expected
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complete data log-likelihood (or equivalently the expectation of the regularized com-
plete data log-likelihood):

Qr (Θ,Θ(t)) = Q(Θ,Θ(t)) − λR(T )

=
∑

i,h

z̃.h logαh +
∑

h

z̃.h log cd(κh) +
∑

i,h

z̃ihκhμ
�
h xi

−λ

2

∑

h

∑

i

∑

j

τi j (z̃ih − z̃ jh)
2 (8)

Note that the directmaximization of expression (8) is intractable due to the introduction
of the regularization term—the M-step of EM does not have a closed-form solution.
Fortunately, in the GEM algorithm it is sufficient to find a better Θ at each iteration,
i.e., we choose Θ(t+1) so that Qr (Θ

(t+1), Θ(t)) ≥ Qr (Θ
(t), Θ(t)). Hence, following

the strategy described in Cai et al. (2008) and He et al. (2011), which is closely related
to the optimization scheme proposed in (Zhu and Lafferty 2005) in the context of
semi-supervised learning, we derive an efficient M-step that is guaranteed to increase
(8) at each iteration. The key idea is to optimize the different parts of (8) separately
so as to increase Qr (Θ

(t), Θ(t)).
We first minimize the regularization term as it depends only on the posterior prob-

abilities z̃ih . This step yields the smoothed posteriors on the user–user graph. It is

obvious that the smoothed posterior z̃ih minimizing R(T ) is given by z̃ih =
∑

j τi j z̃ jh∑
j τi j

.

This minimization scheme, however, can lead to a strong smoothing, where the new
posteriors are substantially far from the original ones. Hence, for a better control
of the smoothing process one should decrease R(T ) gradually, instead of its direct
minimization. This can be done by the Newton–Raphson method as follows:

z̃ih := z̃ih − γ
R′(T )

R′′(T )
= (1 − γ )z̃ih + γ

∑
j τi j z̃ jh

∑
j τi j

(9)

where R′, R′′ denote the first and second derivative of the regularization term relative
to z̃ih , and γ ∈ [0, 1] is the Newton–Raphson’s step parameter. In our context, we can
think of γ being the level of smoothing. If γ = 0 then no smoothing is performed, and
if γ = 1 then the smoothed posterior distribution of each user is completely specified
by the posterior distributions of his neighbors in the social graph.

Once the smoothing step is done, the next step consists in maximizing the expecta-
tion of the complete data log-likelihood Q relative to the parameters Θ , which yields
the following update formulas (Banerjee et al. 2005):

α̂h =
∑

i z̃ih
n

, (10a)

μ̂h = rh
‖rh‖ where rh =

∑

i

z̃ihxi , (10b)
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κ̂h ≈ r̄hd − r̄3h
1 − r̄2h

where r̄h = Id/2(κ̂h)

Id/2−1(κ̂h)
= ‖rh‖

∑
i z̃ih

. (10c)

Notice that, an exact estimation of the concentration parameter κ̂h implies to inverse
a ratio of Bessel functions, which has not a close form expression. To overcome this
difficulty Banerjee et al. (2005) proposed the efficient approximation (10c), which
is suitable for high dimensional datasets. Furthermore, Tanabe et al. (2007) showed
theoretically that the above approximation lies in the interval in which the exact ML
estimates of κh exists. More accurate approximation of κh can be reached by using
iterative methods (Tanabe et al. 2007; Sra 2012), the latter, however, are less suitable
in high dimensions, since they involve an extensive computation of a ratio of Bessel
functions.

It is worth nothing that theM-step described above does not necessarily increase the
regularized log-likelihood function (5) due to the smoothing step. In order to address
this issue, we adopt a strategy similar to that described in Cai et al. (2008) and He et al.
(2011). After eachM-step we check if the regularized log-likelihood function has been
decreased, thenwe decrease the smoothing parameter γ and perform again theM-step.
Alternating the above E-step and optimization scheme (M-step) constitutes our soft
social movMF algorithm—denoted as Soc-movMF in the rest of the paper—which
is described in more details by Algorithm 1.

It can be shown that the computational complexity of Soc-movMF is O(g · nr +
g · ns) per iteration, which scales linearly with the number of observed relations ns
in the social network and observed ratings nr in the user-item matrix. In practice, we
have nr 
 n× d and ns 
 n× n, thereby Soc-movMF is very efficient and suitable
for large datasets.

Fitting the parameters of Social-movMFs to the user-item matrix, using
Soc-movMF, constitutes the training component of our CF system. Once this step is
done, the missing ratings of the i th user can be easily predicted as follows

x̂i =
∑

h z̃ihμh

‖∑
h z̃ihμh‖

. (11)

Observation It is worth noting that the proposed model Social-movMFs allows the
propagation of social information, between users, through the smoothing process (see
step 3.1 in Algorithm 1). A property which is desirable since it may help to alleviate
the sparsity related issues in both the ratingmatrix and social network, as it has already
been emphasized in previous works (Ma et al. 2008, 2009; Jamali and Ester 2010).

5 Experimental study

To show the benefits of our approach, we conduct extensive experiments on several
real-world datasets, in which we benchmark Soc-movMF against several strong com-
peting social-CF methods, namely SoRec (Ma et al. 2008), RSTE (Ma et al. 2009),
SocialMF (Jamali and Ester 2010), SoReg (Ma et al. 2011), TrustMF (Yang
et al. 2013) and TrustSVD (Guo et al. 2015). In order to illustrate the advantage of
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Algorithm 1: Soc-movMF.

Input: X (xi ∈ S
d−1) the rating matrix of size (n × d),

T the adjacency matrix of the social network, g the number of clusters, λ the regularization
parameter.

Output: Z̃, Θ;
1. Random initialization: Θ ← Θ(0); t ← 0;
repeat
2. Expectation step of GEM:
for i = 1 to n do
for h = 1 to g do
z̃(t)ih ← αh fh (xi |μh ,κh )∑


 α
 f
(xi |μ
,κ
)

end for
end for
3. Maximization step of GEM:
smooth ← TRUE; γ ← 0.9;
while smooth do
3.1 Smooth the posterior probabilities

z̃(t+1)
ih ← z̃(t)ih ; ∀i, h
z̃(t+1)
ih ← (1 − γ )z̃(t+1)

ih + γ

∑
j τi j z̃

(t+1)
jh∑

j τi j
; ∀i, h

3.2. Compute the new parameters Θ(t+1)

for h = 1 to g do

α̂h ←
∑

i z̃
(t+1)
ih
n

μ̂h ← rh‖rh‖ with rh = ∑
i z̃

(t+1)
ih xi

κ̂h ← r̄hd−r̄3h
1−r̄2h

with r̄h = Id/2(κ̂h )

Id/2−1(κ̂h )
= ‖rh‖

∑
i z̃

(t+1)
ih

.

end for
3.3. Compute the regularized log-likelihood

Lr (Θ(t+1); X) ← L(Θ(t+1); X) − λR(T )

if Lr (Θ(t+1); X) < Lr (Θ(t); X) then
3.4 Decrease the smoothing parameter γ

γ ← γ × γ

else
smooth ← FALSE; t ← t + 1;

end if
end while

until convergence

leveraging information from social networks, we also compare Soc-movMFwith the
traditional movMFs-based clustering algorithm movMF (Banerjee et al. 2005). Notice
that movMF arises as a special case from Soc-movMFwhen λ = 0. For all competing
methods we used LibRec2—a Java library which implements numerous state-of-the-
art recommendation algorithms—, except for movMF we used our implementation.

Note that previous works, in the context of social CF, established empirically that
the aforementioned competing methods perform better than several traditional CF

2 http://www.librec.net/.
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Table 1 Description of datasets

Characteristics Datasets

FilmTrust CiaoDVD Ciao-280k Flixster Epinions

#Users 1508 17,615 7375 147,612 40,163

#Items 2071 16,121 106,797 48,794 139,738

#Ratings 35,497 72,665 284,052 8,196,077 664,824

Density 1.14% 0.026% 0.04 0.114% 0.01%

ratings-scale [0.5,4] [1,5] [1,5] [0.5,5] [1,5]

#links 1853 22,484 111,781 2,538,746 442,979

links-type Trust Trust Trust Friendship Trust

Network-density 0.08% 0.01% 0.2% 0.011% 0.029%

approaches, such as SVD++ (Koren 2008), Matrix Factorization- and probabilistic
MF-basedmethods, therefore we do not consider these approaches in our experiments.

5.1 Datasets

We selected five popular benchmark real-world datasets, including both the user-
item preferences and social relationships between users, namely FilmTrust, CiaoDVD,
Ciao-280k, Flixster and Epinions.

– Flixster3: is a social rating dataset crawled by Jamali and Ester (2010) from the
flixster.com website. The latter is a social movie website, where users can watch,
buy, share, rate and reviewmovies. Each user can create his/her own social network
by adding users into his/her friend list.

– FilmTrust4: is a dataset crawled by Guo et al. (2013) from the FilmTrust website.
FilmTrust, similar to Flixster, is a movie rating and sharing community. Unlike the
Flixster datasets, the social interactions between users are directed in FilmTrust.

– Ciao-280k5: this dataset is crawled by Tang et al. (2012) from the product review
website Ciao (ciao.co.uk). In the above site users can rate and review products as
well as add users to their trust network.

– CiaoDVD4: is crawled by Guo et al. (2014) from the Ciao site from the category
of DVDs.

– Epinions5: is crawled from the Epinions website (epinions.com). As Ciao, Epin-
ions is a consumer review site where users can rate and review products, and add
members to their trust list.

The characteristics of the above datasets are reported in Table 1. The trust links, in the
social network, are directed and give rise to asymmetric networks, while friendship
are undirected and give rise to symmetrical networks.

3 http://www.cs.ubc.ca/~jamalim/datasets/.
4 http://www.librec.net/datasets.html.
5 http://www.jiliang.xyz/trust.html.
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5.2 Evaluation metrics

Evaluating CF approaches still remains a challenging task. In our experiments, we
adopt a commonly used approach to evaluate such systems, that consists in assessing
the recommendation accuracy on a set of held-out items—the test set. To this end,
we retain four widely used measures, from information retrieval, namely the Normal-
izedDiscount CumulativeGain (nDCG),MeanReciprocal Rank (MRR), Precision@k
(Prec@k) and Recall@k (Rec@k), where k is the number of items in the recommen-
dation list.

– MRR: The Reciprocal Rank (RR) for a recommendation list is the multiplicative
inverse of the rank of the first “good” item. Themean reciprocal rank is the average
of the RR’s of all the recommendation lists.

MRR = 1

n

∑

i

1

ranki

where n is the number of users who receive recommendations, i.e., the number
of recommendation lists, and ranki is the rank of the first correct item in the
recommendation list of user i . Intuitively, the RR measures how far a user should
go in the recommendation list to find a good item.

– nDCG6: the DCG is used to measure the gain of each item relative to its position
in a ranked list of items. Formally the DCG for a user i is given by

DCGi =
∑

j∈Di

1

log (rank j + 1)

where Di denotes the set of held-out items for user i , and rank j is the rank of item
j . The normalized DCGi is given by

nDCGi = DCGi

idealDCGi

where the idealDCGi is the best achievable DCGi , i.e., the value of the measure if
the ranking was perfect. The nDCG is high if the most relevant items appear early
in the ranked list. To evaluate an entire model we compute the average nDCG over
all users: nDCG = 1

n

∑
i nDCGi .

– Precision@k: for each user the Precision@k denotes the proportion of good items
in his/her top-k recommendation list. To evaluate an entire CF system we compute
the average Precision@k over all users.

– Recall@k the Recall@k for a user is the proportion of good items, in the user’s
top-k recommendation list, from the number of relevant held-out items for that
user. As for the above measures, we can compute the average Recall@k over all
users to evaluate an entire model.

6 Several variants of nDCG exist, here we adopt the same as in LibRec for fairness purpose.
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The nDCG measures the raking quality of a model, while Precision@k and
Recall@k assess the quality of a user’s top-k recommendation list. All the above
measures vary from 0.0 to 1.0, the higher these measures, the better is the recommen-
dation quality.

Notice that we do not consider prediction metrics, such as MAE and RMSE, in
our experiments. As it has been already established by previous works (Cremonesi
et al. 2010; Amatriain et al. 2012; Loiacono et al. 2014; Chaney et al. 2015), low
MAE and RMSE do not necessarily equate to best user satisfaction. As emphasized in
(Cremonesi et al. 2010; Amatriain et al. 2012), the purpose of a CF system is to provide
users with a set of relevant items, as a ranked list. In most commercial systems, users
do not receive the predicted rating values, but rather lists of few selected items and
ordered according to these values. Thus, the task of item recommendation is by nature
a ranking problem. It is therefore more adequate to evaluate CF systems according to
the quality of lists of items they recommend. Furthermore, in our case each approach
makes predictions in its own range. For instance our method normalizes data so that it
lies on a unit hypersphere, some retained competing methods map the original ratings
to the interval [0, 1]. So, it is not consistent to compare these approaches in terms of
prediction accuracy, by using measures such as MAE and RMSE which are strongly
sensitive to the range in which the predicted ratings lie.

5.3 Experimental settings

In our experiments we adopt the fivefold cross validation strategy. Each dataset was
randomly split into fivefolds. At each run, fourfolds—80% of data—are used for
training and the remaining fold is used for testing. On each dataset we perform five
runs in order to test all folds. The average performance over the five runs is reported
as the final result.

In order for comparisons to be fair and assess the impact of the social network
information, we use the same random parameters Θ0 to initialize both Soc-movMF
and movMF, in all our experiments.

Our approach Soc-movMF and the traditional movMF, require as an input the
number of clusters g which is analogous the number of latent factors k in matrix
factorization-based approaches. The number of latent factors k, in the retained base-
lines, is usually set to 5 or 10 in previous works. In our experiments we found that the
different baselines achieve better performances with k = 5 in almost all situations,
we choose therefore k = 5 for all MF-based approaches. Concerning the number
of clusters, we empirically found that both our approach and movMF provide high
performances with a small number of clusters—usually g ≤ 10. Thus, for fairness
purpose, and due to the analogy between g and k, we set g = 5 in all our experiments.
Nevertheless, we illustrate the impact of g in our experiments.

Another input required by all approaches including the proposed one and competing
methods, is the regularization parameterλ. In our casewe set this parameter to 1 so as to
give equal importance to both the preference and social information. The impact ofλ is,
however, illustrated in our experiments. TheMF-based methods considered here often
require several regularization parameters that are usually set to λ = 0.001. The other
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settings for the regularization parameters, determined either by our experiments or by
previousworks (Guo et al. 2015), are as follows:TrustMF andsocialMFλT = 1.0,
SoRec λc = 0.001 for Flixster and 1.0 for the others, SoReg β = 1.0 for Flixster
and 0.1 for the others, RSTE α = 0.4, TrustSVD λt = 0.9, 1.0, 1.0, 0.5, 0.5
and λ = 1.2, 0.5, 0.5, 0.9, 0.8 for FilmTrust, CiaoDVD, Ciao-280k, Epinions and
Flixster, respectively.

5.4 Empirical results and discussion

The average performances of each approach over the different datasets are reported
in Table 2. In order to ease interpretation, Figs. 1, 2, 3 and 4 provide another rep-
resentation of the results reported in Table 2. As these results show clearly, the
proposedSoc-movMF performs substantially better than all competingmethods, over
all datasets. Note that even a small improvement in nDCG may result in an important
improvement in terms of the other recommendation quality measures, this is due to
the log factor in nDCG.

Beyond the fact that the proposed approach outperforms competing methods, sev-
eral issues are raised below to better understand the effectiveness of Social-movMFs
and characterize the circumstances where it provides the most significant improve-
ments.

Is it beneficial to model CF data as directional data distributed on the surface of
a unit-hypersphere?
We observe that, even if the traditional vMF mixture model (movMF) does not take
into account the social interactions between users, it is superior to the other competing
methods in almost all situations, except on Flixster where SoReg offers the best
performance among the competing methods. This provides strong empirical support
for the advantage of modeling collaborative filtering data as directional data lying on
a unit-hypersphere.

What is the impact of the social component of Soc-movMF?
Recall thatmovMF arises as a special case fromSoc-movMFwhenλ = 0, i.e.,movMF
is exactly the Soc-movMF without the social component. Column “Improve”, in
Table 2, shows that the proposed Soc-movMF noticeably improves the performances
of movMF. This constitutes empirical evidence that accounting for social interactions
among users helps to improve the recommendation quality.

Why does the improvement rate, in the recommendation quality, differ substan-
tially from one dataset to another?
The improvement rate on Flixster is significantly more important than on the other
datasets, while the improvement on FilmTrust is quite low. We believe that this
behaviour is due to the characteristics of the different datasets in terms of the number
of observed ratings and social relations per user. In Fig. 5 we report the proportion of
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Fig. 1 Comparison of average nDCG over different datasets
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Fig. 2 Comparison of average MRR over different datasets

cold start users7, who have expressed very few ratings (resp., social-relations), five or
fewer, in the user-item matrix (resp., social network).

From Fig. 5 we note that Flixster exhibits different characteristics in comparison
to the other datasets. In fact, in Flixster, while most users—more than 50%—are cold
start users in the preference matrix, only few are cold start in the social network as
opposed to the other datasets. This suggests that the social interactions in Flixster play
a key role in handling the cold start users in the preference matrix, which allowed
Soc-movMF to improve the performances of movMF by a noticeable amount.

7 Cold start users are users who have expressed only few rating/social-interactions. Following previous
works (Jamali and Ester 2010; Guo et al. 2015) we consider users who have expressed less than five ratings
as cold start users in the preference matrix. Similarly, users who have less than five social relations are
considered as cold start users in the social network.
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In FilmTrust, we note only few cold start users in the preference matrix, against
a lot of cold start users—more than 90%—in the social network. Hence, most infor-
mation in FilmTrust is contained in the user-item matrix, which may explain the low
improvement in the performances of Soc-movMF relative to movMF.

In the Epinions and CiaoDVD datasets we observe a high rate of cold start users
in both the user-item matrix and the social network. Although most users expressed
only few social interactions in the above two, the social information seems to play
an important role, in that it allowed Soc-movMF to reach better performances than
movMF. We believe that this behaviour is due to the propagation of social interactions
in Soc-movMF, see the observation below Algorithm 1.

Finally, the high performances of Soc-movMF, relative to movMF, on Ciao-280k
suggest that, evenwhen only few users are cold start users, in the preferencematrix, the
social information is still of great interest to make more accurate recommendations.

To sum up, the results from Table 2 suggest that, to make more accurate recommen-
dations, not only the social interactions between users should be taken into account, but
also the intrinsic directional properties of CF data. It seems better to model collabora-
tive filtering data as directional data. Moreover, accounting for the social interactions
among users seems to be of particular interest when most users have expressed very
few ratings. In the next section, we shall investigate the latter result further.

5.5 movMFs versus social-movMFs on cold start users

Cold start is a major challenge in CF, because in many real-world applications most
users express very few ratings. In order to complete the results from the previous sec-
tion, we shall investigate in greater depth the impact of the social information on users
who expressed very few ratings. We conduct, therefore, another series of experiments
in which we benchmark our social model Soc-movMF against the traditional movMF
model, on cold start users.

From Table 3 we can clearly observe that Soc-movMF still provides a high rec-
ommendation accuracy and substantially improves the performances of movMF. More
interestingly, on the FilmTrust, Ciao-280k and Flixster data sets we observe a greater
improvement, in the performance of Soc-movMF relative to movMF, compared with
Table 2 (see column “Improve”).

In order to understand why the improvement rate may differ substantially from
one dataset to another, we report in Fig. 6 the distribution of out degrees per cold
start user, i.e., the number of social relations expressed by a cold start user, over the
different datasets. From Table 3 and Fig. 6, we observe that the improvement rate in
the performances of Soc-movMF, relative to movMF, goes from high to low as the
distribution of the number of social interactions, per cold start user, decreases. For
instance on Flixster, we observe that most cold start users expressed more than five
social relationships, which may explain the strong superiority of social Soc-movMF
in comparison to movMF.

These results, constitute empirical evidence, that accounting for social interactions
among users is of great interest and helps to alleviate the cold start issue.
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Table 3 Comparison of average
recommendation accuracy on
cold start users—with 5 or fewer
ratings; “Improve” indicates the
improvement reached by
Soc-movMF relative to the
performance of movMF

Datasets Measures movMF Soc-movMF Improve (%)

FilmTrust nDCG 0.4534 0.4663 2.75

MRR 0.3457 0.3572 3.21

Prec@5 0.1202 0.1336 10.1

Rec@5 0.3974 0.4334 8.29

Prec@10 0.0731 0.0843 13.3

Rec@10 0.4760 0.5471 13.0

CiaoDVD nDCG 0.1409 0.1459 3.40

MRR 0.0271 0.0317 14.5

Prec@5 0.0068 0.0077 11.2

Rec@5 0.0289 0.0316 8.28

Prec@10 0.0058 0.0062 6.62

Rec@10 0.0487 0.0519 6.09

Ciao-280k nDCG 0.1203 0.1344 10.5

MRR 0.0201 0.0431 53.3

Prec@5 0.0059 0.0110 45.9

Rec@5 0.0132 0.0282 53.1

Prec@10 0.0041 0.0073 42.9

Rec@10 0.0185 0.0375 50.6

Epinions nDCG 0.1102 0.1127 2.17

MRR 0.0125 0.0161 22.0

Prec@5 0.0026 0.0035 26.4

Rec@5 0.0094 0.0123 23.4

Prec@10 0.0022 0.0032 31.1

Rec@10 0.0152 0.0218 30.1

Flixster nDCG 0.1142 0.3106 63.2

MRR 0.0047 0.1848 97.5

Prec@5 0.0004 0.0538 99.2

Rec@5 0.0016 0.2233 99.3

Prec@10 0.0003 0.0394 99.2

Rec@10 0.0023 0.3209 99.3

5.6 Impact of the number of clusters and the regularization parameters

We investigate the impact of the two parameters g and λ on the performances of
Soc-movMF. We illustrate their behavior on FilmTrust, CiaoDVD, Ciao-280k and
Epinions in terms of nDCG. In Fig. 7 the values of nDCG are depicted as a function of
the number of clusters g, over the different datasets. We observe that a small number
of clusters (<10) seems to be enough to reach high recommendation performances.8

Figure 8 illustrates the impact of the regularization parameter λ. As it is clear from

8 We observed the same behaviour on the Flixster dataset, not reported here for presentation purpose.

123



1238 A. Salah, M. Nadif

0

5

10

15

20

25

30

Flixs
ter

Ciao−
280k Epini

ons
FilmTrust CiaoD

VD

Fig. 6 Cold start users: distribution of out degree, i.e., the number of social interactions per cold start user

FilmTrust

0.62

0.64

0.66

5 10 15 20 25 30 35 40

Number of clusters

n
D

C
G

CiaoDVD

0.100

0.125

0.150

5 10 15 20 25 30 35 40

Number of clusters

n
D

C
G

Ciao−280k

0.160

0.165

0.170

0.175

0.180

0.185

5 10 15 20 25 30 35 40

Number of clusters

n
D

C
G

Epinions

0.140

0.145

0.150

0.155

5 10 15 20 25 30 35 40

Number of clusters

n
D

C
G

Fig. 7 Impact of the number of clusters g

FilmTrust

0.650

0.655

0.660

0.665

0.670

0 50 100 150 200 250 300 350 400 450

Regularization parameter  λ

n
D

C
G

CiaoDVD

0.140

0.145

0.150

0.155

0 50 100 150 200 250 300 350 400 450

Regularization parameter  λ

n
D

C
G

Ciao−280k

0.16

0.17

0.18

0.19

0 50 100 150 200 250 300 350 400 450

Regularization parameter  λ

n
D

C
G

Epinions

0.140

0.145

0.150

0.155

0 50 100 150 200 250 300 350 400 450

Regularization parameter  λ

n
D

C
G

Fig. 8 Impact of the regularization parameter λ

this figure, Soc-movMF is highly stable relative to the variations of the regularization
parameter λ and seems to provide slightly better performances with a small value of
λ, which facilitates the setting of this parameter.

6 Conclusion

Weproposed Social-movMFs, a novel model that accounts for social network informa-
tion to improve item recommendations. Social-movMFs simultaneously seeks groups
of users who tend to express similar preferences and brings the distributions, over
clusters, of socially connected users closer to each other so as to capture the influences
between friends. While existing approaches to social CF are based on popular mod-
elling assumptions, such as Gaussian, our approach builds on the vMF distribution
which arises naturally for data distributed on the surface of a unit-hypersphere. From
our experiments, it seems that CF datasets possess intrinsic directional characteristics
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that are consistent with the vMFmodeling assumption.Moreover, incorporating social
information into a vMF mixture model turns out to be very beneficial and makes it
possible to alleviate the sparsity related issues, such as the cold start problem.

In terms of performance the proposedmodel improves noticeably the recommenda-
tion accuracy of several strong competing methods, including the traditional movMF
and several social CF models, as illustrated in our experiments. Our empirical results
suggest that, formakinggood recommendations, not only the social interactions among
users should be taken into account, but also the intrinsic “directional” properties of
CF data.

The good performances of Soc-movMF motivates future investigations, that may
include incorporating time into Social-movMFs and building online variants so as
to handle the frequent changes in social CF: new ratings, social relations, items and
users. Another line of future work is to extend Social-movMFs to the context of co-
clustering, by relying on the block vMF mixture model (Salah et al. 2016b, c), so as
to partition the sets of users and items simultaneously. Such an extension would allow
us to alleviate the sparsity problem even better since the co-clustering (Dhillon et al.
2003; Nadif and Govaert 2010; Govaert and Nadif 2013, 2016) has proven to be very
effective in the context of high dimensional sparse data.
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