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Abstract Co-clustering addresses the problem of simultaneous clustering of both
dimensions of a data matrix. When dealing with high dimensional sparse data, co-
clustering turns out to be more beneficial than one-sided clustering even if one is
interested in clustering along one dimension only. Aside from being high dimen-
sional and sparse, some datasets, such as document-term matrices, exhibit directional
characteristics, and the L2 normalization of such data, so that it lies on the surface
of a unit hypersphere, is useful. Popular co-clustering assumptions such as Gaus-
sian or Multinomial are inadequate for this type of data. In this paper, we extend the
scope of co-clustering to directional data. We present Diagonal Block Mixture of Von
Mises–Fisher distributions (dbmovMFs), a co-clustering model which is well suited
for directional data lying on a unit hypersphere. By setting the estimate of the model
parameters under the maximum likelihood (ML) and classification ML approaches,
we develop a class of EM algorithms for estimating dbmovMFs from data. Extensive
experiments, on several real-world datasets, confirm the advantage of our approach
and demonstrate the effectiveness of our algorithms.
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1 Introduction

Clustering is a powerful unsupervised learning technique that has been widely used
to group together “similar” objects. Due to its practical importance, clustering has
attracted a lot of attention in various scientific areas such as machine learning, data
mining and information retrieval. This led to the development of a large variety of clus-
tering approaches.However,whendealingwith highdimensional sparse data (typically
more than 1000 dimensions and 90% of zeros), most of the popular clusteringmethods
suffer from poor performance, in terms of both the scalability and quality of clustering.

In this context, different approaches exist and the mixture model is undoubtedly a
very useful contribution to clustering; it offers considerable flexibility. Dealing with
directional data distributed on a unit hypersphere, the mixture of von Mises–Fisher
(vMF) distributions may turn out to be a wise choice (Banerjee et al. 2005; Salah
and Nadif 2017). In fact, this model noted movMFs is one of the most appropriate
model for clustering high dimensional sparse data, such as document-term matrices
arising in text mining. In this domain, it has been empirically demonstrated that vMF-
based clustering methods perform better than several existing approaches; see, e.g.,
(Zhong andGhosh 2005; Gopal andYang 2014). In particular, vMF-based approaches,
focus on the directions of objects (documents) which turn out to be relevant when
clustering text documents. From a statistical point of view this means that document-
term matrices possess directional characteristics (Mardia and Jupp 2000). Existing
vMF-based clusteringmodels, however, focus only on clustering along one dimension,
i.e, either row or column clustering. Hence, they do not exploit the inherent duality
between rows and columns of data matrices. In the clustering context, it turns out
that, the exploitation of this duality presents a real advantage to improve the quality of
clustering and alleviate the aforementioned difficulties related to high dimensionality
and sparsity. This, can be achieved by using a co-clustering.

Co-clustering (Govaert and Nadif 2013) is an important extension of traditional
one-sided clustering that addresses the problem of simultaneous clustering of both
dimensions of data matrices. Since the works of Hartigan (1975), Bock (1979, 1994),
Govaert (1995) or Vichi (2001), co-clustering, under various names, has been suc-
cessfully used in a wide range of application domains where the co-clusters can
take different forms (Van Mechelen et al. 2004). For instance, in bioinformatics co-
clustering, referred to as biclustering (Madeira and Oliveira 2004; Hanczar and Nadif
2010), is used to cluster genes and experimental conditions simultaneously, in collab-
orative filtering (Deodhar and Ghosh 2010) to group users and items simultaneously,
and in text mining (Ailem et al. 2016; Govaert and Nadif 2016) to group terms and
documents simultaneously.

Co-clustering exhibits several practical advantages making it possible to meet the
growing needs in several current areas of interest:

– By intertwining row clustering and column clustering at each stage, co-clustering
performs an implicitly adaptive dimensionality reduction, which is imperative
to deal with high dimensional sparse data. This makes it possible (i) to develop
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efficient algorithmswith a dramatically smaller number of parameters (ii) to reduce
the original data matrix into a much simpler and condensed data matrix with the
same structure.

– Co-clustering exploits the inherent duality between rows and columns of data
matrices making it possible to enhance the clustering along both dimensions, by
using the information contained in column clusters during row assignments and
vice versa.

– Far from adding complexity, co-clustering ismore informative than one-sided clus-
tering, and produces meaningful clusters. In the case of document-term matrices,
for example, co-clustering annotates sets of documents automatically by clusters
of terms.

Several approaches havebeenproposed in order to address the problemof co-clustering
and to date, there is no co-clustering approach that works better than the others in
all situations. In this paper, we retain the generative mixture model-based approach
(Govaert and Nadif 2013) for its flexibility, its ability to model different types of data
and uncover various specific cluster structures. In particular, we concentrate on the
practical problem of co-clustering document-term matrices arising in text mining. In
this domain, it is well known that normalizing documents in order to lie on the surface
of a unit hypersphere removes the bias induced by their lengths. Thus, and as pointed
above, modelling such data as directional is the most appropriate choice. Despite the
importance of such modelling, existing co-clustering approaches are based on popular
assumptions such as Gaussian or Multinomial, which are inadequate to model L2
normalized data. Thus, it seems natural to question whether it is possible to get the
best of both directional modelling and co-clustering within the same model. In this
paper, we provide an answer for the above question.We present a general co-clustering
framework tailored for directional data. Our key contributions are:

– We present a novel model for co-clustering high dimensional sparse matrices. This
model is based on the vMF distribution and successfully integrates a directional
measure—cosine similarity—into a co-clustering framework.

– We provide theoretical connections between our model and existing ones, namely
the vMFmixture model (Banerjee et al. 2005), the Gaussian (Banfield and Raftery
1993) and the block Gaussian mixture models (Nadif and Govaert 2010).

– Setting the estimate of the model parameters under the maximum likelihood (ML)
approach, we formulate various co-clustering algorithms, including soft, hard,
stochastic and two simulated annealing variants.

– To demonstrate the benefits of our approach for the analysis of high dimensional
sparse data, we conducted extensive experiments, on several challenging real-
world datasets.

– The dimensionality reduction property of our model alleviates the problem of high
concentration parameters κ , which induce over and under flows; a well known
difficulty in vMF based models. We validate this finding (i) theoretically by a
theorem guaranteeing that our model leads to concentration parameters that are
bounded from above by that of movMFs, (ii) empirically by showing that our
algorithms yield substantially lower concentration parameters thanmovMFs-based
algorithms, on real-world datasets.
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2 Related work

Most of the earlier works using vMF distributions focused on low dimensional data,
i.e, using 2- or 3-dimensional vMF distributions (McLachlan and Peel 2004), due to
difficulties related to the estimation of the concentration parameter κ , that involves the
inversion of ratios of Bessel functions. In the context of clustering and high dimen-
sionality, Banerjee et al. (2005) proposed algorithms derived from a mixture of vMF
distributions movMFs. They used an EM-based solution to estimate the parameters
of their model and proposed an accurate approximation to estimate the concentration
parameter κ for a high dimensional vMF distribution. Since this contribution, different
vMF based models for clustering high dimensional sparse data have been proposed.
For instance, Reisinger et al. (2010) proposed a spherical topic model based on a
mixture of vMF distributions. More recently, for text data clustering, Gopal and Yang
(2014) proposed a full Bayesian formulation of movMFs and developed two novel
variants of movMFs, namely hierarchical and temporal. All these works, however,
focused on one-sided clustering only.

Unlike previous vMF models, the model we propose acts simultaneously on both
dimensions of data matrices, and thereby exhibits the advantages of co-clustering.
Specifically, our model seeks a diagonal structure by co-clustering, meaning that
rows and columns have the same number of clusters, and after a proper reorgani-
zation of rows and columns we obtain a block diagonal structure, as illustrated in
Fig. 1.

In textmining, the domainwhichwe focus on, the diagonal structure arises naturally
in the document-term matrices, as it has been demonstrated by several earlier works.
For example, Dhillon and Modha (2001) proposed the spherical k-means algorithm,
which arises form a vMF mixture model, and they empirically demonstrated that doc-
uments are grouped together because they use similar terms yielding a block diagonal
structure. In Dhillon et al. (2003) the information theoretic co-clustering algorithm
was proposed, that seeks a more general block structure, i.e, not necessarily diago-
nal. However, during the experiments, the authors observed that some term clusters
are highly indicative of individual document clusters inducing a block diagonal sub-
structure. Among popular diagonal co-clustering, we can mention spectral approaches
(Dhillon 2001; Labiod and Nadif 2011; Ailem et al. 2017b) and the block diagonal
model for co-clustering binary data (Laclau and Nadif 2017) or count data; see, e.g.,
(Ailem et al. 2017a).

Fig. 1 dbmovMFs-based co-clustering: (left) original data, (middle) data reorganized according to z, (right)
data reorganized data according to (z,w)
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The diagonal assumption may seem restrictive, however, when dealing with high
dimensional sparse data, such as document-term matrices, this assumption exhibits
several advantages as opposed to a non-binding model:

– It makes it possible to develop more parsimonious models, which lends itself more
efficient algorithms since we focus on the most important co-clusters (diagonal
ones), only.

– Unlike common co-clustering algorithms that treats similarly useful (relevant)
and noisy (irrelevant) co-clusters, a diagonal co-clustering algorithm concentrates
on the most relevant co-clusters which best allow us to identify document/word
clusters.

– Due to sparsity, a general co-clustering algorithm may result in a poor locally
optimal solution. More precisely, a general co-clustering algorithm seeks “homo-
geneous” co-clusters and as all co-clusters are treated equally, the quality of
co-clustering may be biased by co-clusters containing a majority of zero entries,
that are homogeneous but not useful (or irrelevant). This difficulty increases with
the number of co-clusters.

– In the context of document-term matrices, diagonal co-clustering has the advan-
tage of producing directly interpretable document clusters. Let us assume a
co-clustering of a document-term matrix into 20 document- and 20 term- clus-
ters. A naive partitioning by co-clustering will produce 400 co-clusters, and it is
left to the user to identify themost useful co-clusters, so as to determinewhich doc-
ument clusters should go with which term clusters, while a diagonal co-clustering
will produce only 20 co-clusters that capture the most useful information.

Notation

– Matrices are denoted with boldface uppercase letters, vectors with boldface low-
ercase letters and sets by script style uppercase letters. The L2 norm is denoted by
‖.‖. The (d − 1) dimensional unit sphere embedded in Rd is denoted by S

d−1.
– Data is represented by a matrix X = (xi j ) of size n × d, xi j ∈ R, the i th row of
this matrix is represented by a vector xi = (xi1, . . . , xid)�, where � denotes the
transpose.

– The partition of the set of rows I into g clusters can be represented by a classifi-
cation matrix Z of elements zih in {0, 1}g satisfying ∑g

h=1 zih = 1. The notation
z = (z1, . . . , zn)�, where zi ∈ {1, . . . , g} represents the cluster label of i , will be
also used.

– Similarly the notations W = (w jh) of size d × g, w jh ∈ {0, 1}g satisfying∑g
h=1 wih = 1, and w = (w1, . . . , wd), where w j ∈ {1, . . . , g} represents the

cluster label of j , will be used to represent the partition of the set of columns J .
– In the same way, the fuzzy classification matrix of I will be denoted by Z̃ = (z̃ih)
where z̃ih ∈ [0, 1], satisfying ∑g

h=1 z̃ih = 1, for all i in I.

3 Preliminaries

In this section, we review the von Mises–Fisher (vMF) distribution, which is well
known in directional statistics (Mardia and Jupp 2000).
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Fig. 2 Left movMFs (Banerjee et al. 2005), right dbmovMFs (this paper)

A d dimensional vMF (d-vMF) distribution, i.e, d ≥ 2 is a continuous probability
distribution on a unit hypersphere S

d−1. Thus, if a d dimensional data point xi on
S
d−1, i.e, xi ∈ R

d and ‖xi‖ = 1 follows a d-vMF distribution, its probability density
function is given by:

f (xi |μ, κ) = cd(κ) expκμ�xi , (1)

where μ is the mean direction (centroid) parameter and κ denotes the concentration
parameter, such that ‖μ‖ = 1 and κ ≥ 0. The normalization term cd(κ) is equal to

cd(κ) = κ
d
2 −1

(2π)
d
2 I d

2 −1
(κ)

where Ir (κ) represents the modified Bessel function of the first

kind and order r . In the vMF distribution the parameter κ controls the concentration
of data points xi ∈ S

d−1 following (1), around the mean directionμ. Thus, f (xi |μ, κ)

reduces to the uniform density on S
d−1 for κ = 0, and it is uni-modal if κ > 0. In

particular, when κ → ∞, f (xi |μ, κ) tends to a point density.

4 A mixture of von Mises–Fisher distributions for co-clustering

Recall that the original mixture of vMF distribution (movMFs) (Banerjee et al. 2005)
focuses solely on clustering along one dimension of a data matrix. Here, we develop
a vMF mixture model for co-clustering. Following the results in Dhillon and Modha
(2001), which state that the unit centroids produced by the spherical kmeans algo-
rithm (a vMF-based clustering algorithm) are localized in the feature space and tend
towards orthonormality, we propose to capture and exploit this structure during the
clustering process. More precisely, we assume that the centroids are orthonormal and
homogeneous from the beginning. To this end, we introduce a new parameter w (see
Fig. 2) that simultaneously guarantees the above assumption and plays the role of a
column partition. Formally, for each centroid μw

h : μh j = 0 if w jh = 0 (column j
does not belongs to cluster h), and μh j = μhh for all j such as w jh = 1. For instance,
assuming amixture of 3 vMF distributions, i.e, g = 3 and h, k = 1, 2, 3, each centroid
μw
h ∈ S

d−1 takes this form:

μw
h = (μh1, . . . , μh1, μh2, . . . , μh2, μh3, . . . , μh3)

� (2)

whereμhk is repeatedw.h times;w.h denotes the cardinality of the hth column cluster.
In addition, we have μhk = 0 ∀k 	= h, leading implicitly to the orthonormality of
centroids, i.e., μ�

h μh′ = 0, for all h 	= h′, and μ�
h μh = 1.
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From a co-clustering point of view, this is equivalent to assume that rows and
columns have the same number of clusters and that each column cluster is associated
(or describes) a single row cluster involving a block diagonal structure (see Fig. 1).
Our model called dbmovMFs (diagonal block mixture of vMF distributions) seeks to
partition simultaneously the set of rows I and columnsJ . Its density function is given
by:

f (xi |Θ) =
∑

h

αh fh(xi |μw
h , κw

h ,w), (3)

where Θ is now formed by μw
1 ,. . ., μw

g , α1, . . . , αg , κw
1 , . . . , κw

g and the column
partition w, i.e, w j = h if the j th column belongs to the hth column cluster, that is
associated with the hth row cluster. Notice that, the centroid and the concentration
parameters μw

h , κ
w
h , respectively, depend on the column partition w.

Let X denote a set of n randomly sampled data points xi on S
d−1 according to

(3). Using the row and column classification matrices Z and W, respectively, the
classification likelihood of X takes the following form:

L(W,μ,α, κ|X ,Z) =
∏

i

∏

h

⎛

⎝αhcd(κh) ×
∏

j

(expκhμhh xi j )w jh

⎞

⎠

zih

.

The corresponding classification log-likelihood of X is given by:

Lc(Θ|X ,Z) =
∑

i,h

zih logαh +
∑

i,h

zih log(cd(κh)) +
∑

i,h, j

zihw jhκhμhhxi j

=
∑

h

z.h logαh +
∑

h

z.h log(cd(κh)) +
∑

i,h

zihκhμhhuih (4)

where uih = ∑
j w jh xi j . This leads to

Lc(Θ|X ,Z) =
∑

h

z.h logαh +
∑

h

z.h log(cd(κh)) +
∑

i,h

zih yih (5)

where yih = κhμhhuih , and in the same manner, we can give another expression of
Lc(Θ|X ,Z) in terms of column assignments as follows

∑

h

z.h logαh +
∑

h

z.h log(cd(κh)) +
∑

j,h

w jh t jh (6)

where t jh = κhμhhvh j , with vh j = ∑
i zih xi j .
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4.1 Connection to existing models

Assuming that the column partition w is fixed, the dbmovMFs model can be viewed
as a classical movMFs (Banerjee et al. 2005) where the mean directions vectors μh ,
h = 1, . . . , g, take the form (2) described above.

Moreover, we can establish connections with the Gaussianmixturemodel (Banfield
and Raftery 1993) and the block Gaussian mixture model (Govaert and Nadif 2013).
More precisely, using the equivalence between the vMF and the Gaussian distribution
(Mardia and Jupp 2000) and assuming thatw is fixed, it can be shown that dbmovMFs
is equivalent to a mixture of Gaussian distributions of spherical form, i.e, the variance
of the hth cluster is given by σ 2

h = ‖mw
h ‖/κh ,mw

h is the centroid of the corresponding
Gaussian component and μw

h = mw
h /‖mw

h ‖. The latter model, is also equivalent to a
diagonal version of the block Gaussian mixture model (Nadif and Govaert 2010), i.e,
each Gaussian component is parameterized by the variance σ 2

h and mean vector mw
h ,

described above.

4.2 Maximum likelihood estimates and the EMb algorithm

To obtain the maximum likelihood estimates for the parameters Θ , we use the Gen-
eralized EM algorithm (Dempster et al. 1977; McLachlan and Krishnan 2007). The
E-step computes the posterior probabilities defined by z̃ih ∝ α

(t)
h fh(xi |μ(t)

h , κ
(t)
h ). The

M-step consists in estimating all parameters maximizing or increasing the expecta-
tion of the classification log-likelihood (4), subject to the constraints

∑
h αh = 1,

‖μw
h ‖2 = ∑

j w jhμ
2
hh = 1 and κh > 0. We obtain the following update formulas (see

“Appendix A.1”).

ŵ jh ←
{
1, if h = argmaxh′ t̃ jh′
0, otherwise

where t̃ jh = κhμhh ṽh j with ṽh j =
∑

i

z̃ih xi j , (7a)

α̂h =
∑

i z̃ih
n

, (7b)

μ̂hh = rwh
‖rwh ‖ = ± 1

√
ŵ.h

with rwh =
∑

i, j

z̃ihŵ jh xi j and ŵ.h =
∑

j

ŵ jh, (7c)

κ̂h ≈ r̄wh d − (
r̄wh

)3

1 − (
r̄wh

)2 where r̄wh = Id/2(κ̂h)

Id/2−1(κ̂h)
= ‖rwh ‖

z̃.hŵ.h
, (7d)

with rwh a d dimensional vector such that rwh j = rwh if w jh = 1 and rwh j = 0, otherwise.
Alternating the above E and M steps leads to our soft-dbmovMF algorithm described
in Algorithm 1. Observe that, unlike the classical movMFs where it is easy to verify
that r̄h ≤ 1 given the definition of r (Banerjee et al. 2005), it is not straightforward to
verify that r̄wh ≤ 1, without careful analysis. Such a result is imperative, to guarantee
that the concentration parameters are positive, i.e, κh > 0, ∀h, especially when using

123



Directional co-clustering

Algorithm 1 soft-dbmovMF (EMb).
Input: X (xi ∈ S

d−1), g the number of co-clusters.
Output: Z̃ and W,
Steps:
Initialization: Θ ← Θ(0);
repeat
1. Expectation step: z̃ih ∝ αh fh(xi |μh , κh), for all i, h
2. Maximization step:
for j = 1 to d do

ṽhj ← ∑
i z̃ih xi j ; t̃ jh ← κhμhh ṽhj , for all h

ŵ jh ← 1, if h = argmaxh′ t̃ jh′ , and ŵ jh ← 0, otherwise.
end for
for h = 1 to g do

α̂h ←
∑

i z̃ih
n ; μ̂hh ← ± 1√

ŵ.h
; rwh ← ∑

i, j z̃ihŵ jh xi j

r̄wh ← ‖rwh ‖
z̃.h ŵ.h

; κ̂h ← r̄wh d−(r̄wh )3

1−(r̄wh )2

end for
until convergence

the approximation of Eq. (7d). Proposition 1 provides theoretical guarantee about
the fact that 0 ≤ r̄wh ≤ 1. The proof is available in “Appendix (A.2)”. By replacing
rd , d and pi in Proposition 1 with rwh , ŵ.h and z̃ih respectively, it is easy to verify
0 ≤ r̄wh ≤ 1.

Proposition 1 Let r be a non-zero vector in R
d (i.e., r = (r1, . . . , rd)�, such that

d ≥ 1) which results from a weighted sum of n d-dimensional unit vector, i.e, r =∑
i pixi , xi ∈ R

d and ‖xi‖ = 1, ∀i ∈ {1, . . . , n}, n ≥ 2, and weights pi ≥ 0, ∀i .
Let rd be a vector in R

d , such as all its components are equal to the sum of elements
of r (i.e, rd1 = · · · = rdd = ∑d

j=1 r j ). Then 0 ≤ ‖rd‖ ≤ d × ∑
i pi with equality

only if all unit vectors xi are equal/collinear.

More interestingly, the concentration parameters depend on the column partition
w, hence, the dimensionality reduction of dbmovMFs alleviates the problem of high
concentration parameters. The following theorem guarantees that dbmovMFs leads to
a concentration parameter that is bounded from above by that of movMFs, for each
cluster. The proof is provided in “Appendix (A.2)”. In practice and when dealing with
highdimensional datasets,we empirically observe thatdbmovMFs-based co-clustering
algorithms yield substantially lower concentration parameters than movMFs-based
algorithms, see Sect. 7.2.6.

Theorem 1 Let X be a n × d matrix, its ith row (object) xi is a d-dimensional unit
vector in Sd−1 (i.e, xi ∈ R

d and ‖xi‖ = 1, ∀i ∈ {1, . . . , n}, n ≥ 2, d ≥ 3). Let z =
(z1, . . . , zn) denote a partition of the set of objects of X into g disjoint clusters. Then,
whatever the partition w of attributes of X into g disjoints clusters, the concentration
parameter of each dbvMF component κ̂w

h estimated via approximation (7d) is always

bounded from above by its vMF counterpart κ̂h. That is, κ̂w
h ≈ r̄wh d−(r̄wh )

3

1−(r̄wh )
2 ≤ κ̂h ≈

r̄hd−(r̄h)3

1−(r̄h)2
with equality only if r̄wh = r̄h .
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4.3 Classification maximum likelihood estimates and the CEMb algorithm

Setting dbmovMFs under the CML approach, which consists in maximizing the classi-
fication likelihood instead of its expectation (Celeux and Govaert 1992), we derive a
hard version of dbmovMFs called CEMb. This is done by incorporating a classification
step (C-step) between the E and M steps as follows: zih = 1 if h = argmaxh′ z̃ih′ and
0 otherwise. The C-step of CEMb, generates a completed sample (xi ,zi ) by allocating
each object xi to cluster zi with the highest posterior probability z̃ih, ∀h. Then, unlike
in the EMb algorithm, the M-step of CEMb consists in maximizing the classification
likelihood instead of its expectation, thereby the update ofΘ is based on the completed
sample (xi ,zi ). The corresponding M-step can be deduced from the M-Step of EMb by
replacing z̃ih by zih and thereby t̃ jh by t jh .

In this way, CEMb simultaneously estimates the parameters and the partition z.
Note that, CEMb is not meant to converge to the ML estimate of Θ , thereby, it yields
inconsistent estimates of the parameters, especially when the mixture components
overlap and exhibit dramatically different proportions.However,CEMb has someuseful
properties listed below.

– CEMb is considerably more faster and scalable than EMb, for instance, consider the
update of the parameter ŵ jh , under the ML approach (see, Eq. 7a) we iterate over
all objects xi to compute t̃ jh , while with CEMb we only iterate over objects within
the hth cluster to compute t jh .

– CEMb allows us to avoid numerical difficulties due to the computation of z̃ih ,
especially in the case of vMF distribution where the terms cd(κh) involve Bessel
functions, and the concentration parameters act as multipliers in the exponent.
In fact, with CEMb we do not need to compute the probabilities z̃ih , the quantity
logαh + log fh(xi |Θ(t)) is sufficient to perform the C-step.

– It eases the derivation of a large number of standard clustering algorithms as
special cases from a mixture framework, which allows to give them a probabilistic
interpretation.

5 Stochastic variants

It is well known that EM is strongly dependent on its starting position. The stochastic
variant of EM (SEM) (Celeux and Diebolt 1985) however makes it possible to alle-
viate this limitation. It consists in incorporating a stochastic step (S-step) between
the E and M steps, which generates a completed sample (xi ,zi ) by drawing a clus-
ter zi ∈ {1, . . . , g} for each data point xi according to the multinomial distribution
M(z̃i1, . . . , z̃ig).

As in CEM the update of Θ is based on the completed sample (xi , zi ) i.e, classi-
fication likelihood instead of its expectation. The SEM algorithm does not share the
convergence properties of EM and CEM. In fact, SEM can allow an update estimate
Θ(t+1) even if L(Θ(t+1)) < L(Θ(t)). Thereby, SEM does not necessarily converge to
the first encountered stationary point of the log-likelihood, which allows it to ignore
saddle points and insignificant local optima.
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5.1 Stochastic dbmovMFs and the SEMb algorithm

Based on SEM we formulate a stochastic version of soft-dbmovMF called SEMb.
In our case, we further propose a stochastic column assignment, by converting t̃ jh
to probabilities w̃ jh , i.e, w̃ jh ∝ t̃ jh and drawing a cluster w j for each column j
according to a Multinomial distributionM(w̃ j1, . . . , w̃ jg). This makes it possible to
avoid a quick convergence to a bad local optimum of the likelihood function, due to
hard column assignments. More intuitively, in the case of document-term matrices,
during the first iterations document clusters are mixed, hence each term is involved in
describing several document clusters. Therefore, imposing hard term assignments at
the beginning, by using Eq. (7a), can lead to a poor local optimum of the likelihood
function, especially when the clusters are poorly separated.

5.2 Simulated annealing dbmovMFs-based algorithms

Oneof themain drawback of theSEM algorithm is that it does not share the convergence
properties of EM; SEM converges in distribution and does not converge point-wise.
Furthermore, when the sample size of the observed data is small, SEM may converge
to a stationary distribution with a high variance, which leads to poor estimation of
the parameters. In order to overcome the aforementioned limitations, the Simulated
Annealing version of EM (SAEM) has been proposed (Celeux and Diebolt 1992), that
reaps the benefit of both EM and SEM simultaneously. To do so, let γt be a sequence
of positive real numbers starting from 1 and decreasing to zero, at each iteration the
parameters are updated as follows:Θ(t+1)

SAEM = (1−γt+1)Θ
(t+1)
EM +γ(t+1)Θ

(t+1)
SEM , where

Θ
(t+1)
EM and Θ

(t+1)
SEM denote the parameters estimated using EM and SEM, respectively.

Thus, SAEM goes from pure SEM at the beginning towards pure EM at the end. If
we further impose the following constraint limt→∞

γ(t)
γ(t+1)

= 1, we can ensure the
asymptotic convergence of SAEM to a local maximum of the log-likelihood.

Based on SAEM, we derive the SAEMb algorithm, which is a simulated annealing
version of EMb. In our case, however, it is difficult to use the above update formula of
SAEM due to parameter w. In order to overcome this difficulty, we propose to use the
following simplified form to update the parameters, which turns out to be effective
and less costly.

Θ
(t+1)
SAEMb ← Θ

(t+1)
SEMb , if γ(t+1) ≥ (1 − γ(t+1)), and Θ

(t+1)
SAEMb ← Θ

(t+1)
EMb , otherwise.

We propose to use the following exponentially decreasing form for

γ(t) = 1 − exp
i t(t)−i tmax

β where i t (t), i tmax denote respectively, the current iteration
and the maximum number of iterations, β is a positive real parameter that controls the
number of SEMb and EMb iterations to be performed. More precisely when β → ∞,
SAEMb tends to pure EMb, similarly when β → 0, SAEMb tend to pure SEMb. In our
experiments, we set β = 20 and i tmax = 100, in such a way that most iterations at the
beginning are done using SEMb, in order to reach a steady state and avoid poor local
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optima, and the last few iterations are performed using EMb, to ensure the convergence
of SAEMb to a local optimum of the log-likelihood function.

This simplified version consists in initializing EMb with SEMb. seeing the initializa-
tion of EMb via SEMb as a Simulated Annealing variant, justifies why EMb is expected
to provide better performances with such an initialization. In the same manner, we
derived a hard simulated annealing variant, denoted in this paper as CAEMb. The dif-
ference with the SAEMb algorithm is that the iterations at the end are performed using
CEMb instead of EMb.

6 Computational complexity in the worst case

Next we analyse the computational complexity of hard-dbmovMF and soft-dbmovMF.

Proposition 2 Let X be a n × d matrix, let nz denote the number of non-zero entries
in X, “it” is the number of iterations and g is the number of co-clusters to be found.
Then (i) the computational complexity of hard-dbmovMF is given in O(i t · nz) (ii)
the computational complexity of soft-dbmovMF described in Algorithm 1 is given in
O(i t · g · nz).

The proofs of (i) and (ii) are given in “Appendix (A.3)”. Proposition 2, states that
theoretically, the computational time of our algorithms is linear with respect to the
number of non-zero entries inX. Hence, the proposed algorithms are very efficient (in
particular the hard variant) and therefore suitable for large sparse datasets.

7 Experimental results

In the sequel, we conduct extensive experiments to validate and illustrate the interest
of the proposed model dbmovMFs and the derived co-clustering algorithms.

7.1 Competing methods

We benchmark our algorithms, i.e, EMb, CEMb, SEMb, SAEMb and CAEMb against
several strong baselines denoted in this paper as follows

– EM denotes the soft-movMF algorithm proposed in Banerjee et al. (2005).
– CEM denotes the hard-movMF algorithm proposed in Banerjee et al. (2005).
– DAEM is the Deterministic Annealing version of soft-movMF proposed in Zhong
and Ghosh (2005).

– Skmeans denotes the spherical kmeans algorithm (Dhillon and Modha 2001),
which is also a simplified version of soft-movMF, where κh = κ → ∞, αh = α,
for all h. It is also a restricted version of hard-movMF where κh = κ , αh = α, for
all h.
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Table 1 Description of datasets

Datasets Characteristics

#Documents #Terms #Clusters Sparsity (%) Balancea

CSTR 475 1000 4 96.60 0.399

WEBACE 2340 1000 20 91.83 0.169

CLASSIC4 7094 5896 4 99.41 0.323

NG20 19949 43586 20 99.82 0.991

SPORTS 8580 14870 7 99.14 0.036

TDT2 9394 36771 30 99.64 0.028

a The balance coefficient is the ratio of the minimum cluster size to the maximum cluster size

– CoclusMod1 is a recent co-clustering algorithm proposed by Ailem et al.
(2016). Through extensive experiments on text datasets, the authors showed that
CoclusMod outperforms several other notable co-clustering methods.

Notice that, in the context of text document clustering, it has been empirically shownon
numerous real-world datasets, that the aforementioned baselines perform better than
several existing clustering and co-clustering algorithms, namely: kmeans using the
euclidean distance, generative mixture models using Bernoulli, Gaussian, and Multi-
nomial distributions, spectral co-clustering, and Latent Dirichlet Allocation (LDA).
Therefore, we do not include these approaches in our comparisons. For further details
see Zhong and Ghosh (2005), Gopal and Yang (2014), Ailem et al. (2017a).

7.2 Real-world datasets

We concentrate on the challenging task of document clustering using high dimensional
and sparse document-term matrices. We retain six benchmark text datasets: CSTR used
in Li (2005), CLASSIC4,2 WEBACE, the 20-newsgroups data (NG20), SPORTS used in
Zhong and Ghosh (2005), and TDT2.3 All these datasets are carefully selected to
represent various particular challenging situations in clustering: balanced clusters,
unbalanced clusters, different number of clusters, different sizes, different degrees of
cluster overlap. The statistics of these different datasets are summarized in Table 1.

7.2.1 Evaluation measures

Evaluating clustering results is not a trivial task, however, when the true category
labels are known, a commonly used approach to validate clustering results consists
in comparing the estimated partition with the true one. To this end, we retain two
widely used measures to assess the quality of clustering, namely the Normalized

1 https://pypi.python.org/pypi/coclust.
2 http://www.dataminingresearch.com/.
3 http://www.cad.zju.edu.cn/home/dengcai/.
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Mutual Information (NMI) (Strehl and Ghosh 2003) and the Adjusted Rand Index
(ARI) (Hubert and Arabie 1985). Intuitively, NMI quantifies how much the estimated
clustering is informative about the true clustering, while the ARImeasures the degree of
agreement between an estimated clustering and a reference clustering. Higher NMI/ARI
is better.

7.2.2 Experimental setting

We use the TF-IDF normalized data representation. For each dataset we set g to the
real number of clusters, and in order to make fair comparisons, all non-stochastic
algorithms are initialized using the same row partition resulting from Skmeans4

started using a random initial point, unless stated otherwise. For our algorithms, we
further initialize the concentration parameters to 10 and the centroids to random initial
vectors, in order to be able to estimate the initial column partition. Concerning our
stochastic variants, i.e, SEMb, CAEMb and SAEMb they are initialized using the same
random row and column partitions.

7.2.3 Evaluation of document clusters

Tables 2 and 3, summarize the results of the different methods over all datasets. All
results are averaged over thirty different starting points, obtained using the initializa-
tion strategy described above. Between brackets, we report the results corresponding
to the trial with the highest criterion. Overall, we observe that dbmovMFs-based algo-
rithms offer the best performances in almost all situations, except in terms of ARI

on TDT2, where CoclusMod achieves the best performances. Importantly, EMb and
CEMb always outperform their movMFs counterparts (EM and CEM), which provides
strong support for the advantage of our co-clustering formulation. Surprisingly, we
note that Skmeans performs substantially better than its generalized variants EM and
CEM in most cases. We discuss the latter point in more details in Sect. 7.2.6.

7.2.4 Advantages of SAEMb and CAEMb over SEMb, EMb and CEMb

Weobserve that our simulated annealing variants,SAEMb andCAEMb, provide the best
performances in almost all situations (although they are initialized randomly), except
on SPORTS, where SEMb achieves substantially better results than the other methods.
As opposed to EMb and CEMb which depend strongly on their starting positions, the
stochastic variants, i.e, SAEMb and CAEMb are not sensitive to their initial positions.
For instance, in the case of high overlapping clusters as in CLASSIC4, NG20 and SPORTS,
we observe that EMb and CEMb suffer from a convergence to a poor local maximum of
the likelihood function, when they are initialized randomly. The SAEMb and CAEMb
algorithms, however, avoid this difficulty and converge to a better local optimum of the
likelihood function, see Table 4; this is due to the advantage of SEMb in the begining.

4 All algorithms, except stochastic variants, provide substantially better results when they are initialized using Skmeans
(in almost all situations).
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Table 4 Comparison of classification log-likelihood

Methods CSTR CLASSIC4 WEBACE NG20 SPORTS TDT2

EMb 976,533.3 122,329,895 4,866,978 3,411,592,328 432,277,941 1,299,234,559

CEMb 976,520.4 122,329,033 4,866,769 3,411,588,346 432,276,368 1,299,232,734

CAEMb 976,540 122,341,547 4,867,537 3,411,836,825 432,282,583 1,299,303,290

SAEMb 976,547 122,341,562 4,868,739 3,411,838,557 432,286,341 1,299,304,500

Bold face numbers indicate best performing method

(a) (b) (c)

(d) (e) (f)

Fig. 3 Classification log-likelihood over iterations, on the different datasets

Figure 3 illustrates the behaviour of SAEMb and its advantage compared to SEMb, the
same behaviour is observed for CAEMb.

7.2.5 NMI versus ARI

The proposed algorithms provide high performances in terms of both NMI and ARI,
while the other movMFs-based methods sometimes provide good NMI but low ARI as
this is the case with almost all datasets, except CSTR. Figure 4 confirms this remark;
we observe that the behavior of NMI and that of ARI are more often in keeping with
our algorithms rather than with movMFs-based algorithms,5 i.e, DAEM, EM, CEM and
Skmeans. The explanation is that movMFs-based clustering methods tend to merge
small clusters and try to split larger ones into comparably sized clusters, as it has been
already emphasized in Banerjee et al. (2005). In fact, unlike ARI, the NMI measure is
less sensitive to clusters merging and/or splitting. Our dbmovMFs-based algorithms,
however, thanks to the centroids orthonormality assumption, avoid the above difficulty,
and are able to discover large aswell as small clusters (seeFig. 5 and confusionmatrices

5 For presentation purposes we omit CEM, EMb and CEMb from Fig. 4, but from Tables 2 and 3 it is
straightforward to verify that our comments still holds for these algorithms.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Best NMI and ARI over all datasets for each method. Our algorithms provide good performances in
terms both NMI and ARI while movMFs-based approach sometimes provide good NMI but low ARI. For
instance, on SPORTS EMb provides NMI = 0.62 and ARI = 0.61 while Skmeans provides NMI = 0.63
and ARI = 0.44 (see confusion matrices of Table 5)

Fig. 5 SPORTS dataset: a original, b reorganized according to Skmeans’s row partition, c reorganized
according to EMb’s row and column partitions

of Table 5). Furthermore, as we can see from Fig. 5, EMb reveals a more interesting
structure (i.e, block diagonal) than Skmeans.

7.2.6 Impact of concentration parameters

The Skmeans algorithm almost always outperforms its generalized variants EM and
CEM. This is due to high concentration parameters κh in the normalization terms
cd(κh) that involve Bessel functions. As it has been highlighted by Banerjee et al.
(2005), in the case of large positive matrices, all the data lie on the first orthant of a
d-dimensional hypersphere, thereby the concentration of such data is implicitly high.
As a result, the concentration parameters κh of the vMF distributions are high and
increase exponentially with the dimensionality of the data. Our model dbmovMFs
alleviates issue thanks to its implicit dimensionality reduction property. In Fig. 6 we
report the distribution of the concentration parameters estimated by our dbmovMFs-
based algorithms andmovMFs-based algorithms.We clearly observe that, CEMb, EMb,
CAEMb and SAEMb yield substantially lower concentration parameters than EM and
CEM.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Distribution of concentration parameters

7.2.7 Assessing the number of co-clusters

Often in practice the number of clusters is not known and should be determined
by the user. Assessing the number of clusters is, however, not straightforward and
still remains one of the biggest challenges in machine learning. Fortunately, in our
case we can rely to well-established statistical theory of model selection since our
algorithms are based on the maximization of the likelihood. More precisely, we can
use Information Criteria (IC), such the Akaike information criterion (AIC) (Akaike
1998), AIC3 (Bozdogan 2000), Bayesian information criterion (BIC) (Schwarz 1978)
or integrated classification likelihood (ICL) (Biernacki et al. 2000). These criteria (IC)
measure the quality of a model given some observed data and take the following form

IC(k) = −2 ln L̂ + 2γ × k (8)

where k denotes the number of parameters to be estimated, γ a penalty coefficient and
L̂ is the maximized value of the log-likelihood function. With γ = 1 we have the AIC

criterion, γ = 3/2 we obtain AIC3 and γ = (log n)/2 leads to the BIC criterion where
n is the sample size—the number of rows/documents in our case. And last, ICL can be
obtained from (8) by replacing L̂ with the classification log-likelihood L̂c and setting
γ to (log n)/2.

Information criteria can be used to select the best model, which yields the lowest
value in terms of the selected information criterion, among a set of models. In our case,
we are interested in selecting the number of clusters, we therefore study the behaviour
of AIC, AIC3 and BIC when varying the number of clusters, on each dataset.

For our experiments, we use the value of L̂ resulting from the simulated annealing
dbmovMFs (SAEMb) algorithm as it seems to provide the best performances in almost
all cases. Assessing the number of free parameters in dbmovMFs is not straightforward
due to the mixing of continuous and discrete parameters. The parameters α and κ

contain g − 1 and g parameters, respectively. The column partition w—that is treated
as a parameter in our case—contains the same number of parameters whatever the
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(a) (b) (c)

Fig. 7 CSTR dataset (True number of classes: 4)

(a) (b) (c)

Fig. 8 CLASSIC4 dataset (True number of classes: 4)

(a) (b) (c)

Fig. 9 WEBACE dataset (True number of classes: 20)

number of column clusters. Nevertheless, as pointed by van Dijk et al. (2009), the
number of possible values for each parameter increases with the number of clusters,
it is therefore more convenient to consider w under its matrix formW of size (d × g),
where each row indicates to which cluster the corresponding column belongs. The
effective number of free parameters in dbmovMFs is therefore k = g × (d + 2) − 1
due to g concentration parameters κh’s, g − 1 mixing proportions αh’s and d × g
column cluster parameters w jh’s.

In Figs. 7, 8, 9, 10, 11 and 12 are depicted the values of AIC, AIC3 and BIC in function
of the number of clusters, over different data sets (notice that the ICL criterion, not
reported here for presentation purpose, behaves like BIC). First of all, the penalty term
of the BIC/ICL criterion, due to log(n) in comparison with AIC and AIC3 which do
not depend on the number of documents, seems to be too strong when n is very high;
it is the case of WEBACE, NG20, SPORTS and TDT2. From Figs. Figs. 7, 8, 9, 10, 11 and
12 we observe that AIC and AIC3 are able to identify a number of clusters that is close
or even equal to the right number of clusters on almost all data sets, except on TDT2
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(a) (b) (c)

Fig. 10 NG20 dataset (True number of classes: 20)

(a) (b) (c)

Fig. 11 SPORTS dataset (True number of classes: 7)

(a) (b) (c)

Fig. 12 TDT2 dataset (True number of classes: 30)

where both criteria underestimate the number of clusters. This suggests that, in our
case, a convenient penalty term γ lies between 1 and 3/2.

Furthermore, AIC seems to be slightly better than AIC3 since the latter tends to
underestimate the right number of clusters on some data sets such as NG20 and
CSTR. Another notable result is that, on CLASSIC4, that contains 4 classes, AIC3 sug-
gests 6 clusters while AIC suggests a number of clusters between 6 and 8, this is,
however, not an issue. In fact, as illustrated in Table 7 some classes in CLASSIC4

are composed of several semantically coherent sub-clusters. Thereby, an interest-
ing approach would be to consider the number of clusters determined by AIC/AIC3
as a starting point, which can then be tuned by exploring the top terms of the
obtained term clusters so as to decide whether the number of clusters should be
increased, decreased or kept unchanged. Next, we investigate the interpretation of term
clusters.
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Table 6 Word clusters discovered by SAEMb on CLASSIC4

C1 C2 C3 C4

Algorithm, program Librari, inform Flow, boundari Cell, patient

System, comput Scienc, research Layer, pressur Rat, growth

Languag, method Book, servic Heat, wing Blood, acid

Function, gener Scientif, index Number, bodi Hormon, tissu

Problem, data Journal, retriev Solut, shock Diseas, cancer

Each cluster is represented by its top 10 words. Clusters C1, C2, C3 and C4 correspond respectively to
CACM, CISI, CRANFIELD and MEDLINE

Table 7 Clustering of CLASSIC4 into 7 co-clusters by SAEMb: the obtained word clusters represented by
their top 10 terms, sorted according to their popularity

CACM CISI CRANFIELD MEDLINE

C1 C2 C3 C4 C5 C6 C7

Algorithm Program Librari Flow Cell Children Patient

Function System Inform Boundari Rat Child Cancer

Integr Comput Scienc Layer Growth Speech Ventricular

Matrix Languag Research Pressur Acid Autist Diseas

Polynomi Data Book Heat Hormon Anxieti Arteri

Permut Problem Servic Wing Tissu Disord Therapi

Squar Structur Index Number Activ Joint Treatment

Invers Process Scientif Bodi Dna Visual Pulmonari

Fit Time Retriev Solut Protein Syndrome Defect

Random Gener Journal Shock Kidnei Autism Breast

7.2.8 Interpretation of term clusters

Although we focused on document clustering, notice that our algorithms offer term
clusters. Each of them describes a single document cluster and thereby, allows to
understand the semantic meaning of document clusters. Tables 6, 7 and 8 provide
typical examples, where the four, seven and top six term clusters resulting fromSAEMb
on CLASSIC4 and TDT2 respectively, are represented by their top 15 terms. The top
terms of each co-cluster were obtained by keeping only the terms that appear in most
documents in the considered cluster. The obtained term clusters are meaningful and
help to make sense of the corresponding document clusters; they are semantically
coherent. More interestingly, and as illustrated in Table 7 on CLASSIC4, when the
requested number of clusters (7) is greater than the natural number of clusters (4),
our algorithm tries to split the natural clusters into semantically coherent sub-clusters.
This suggests that, when the true number of clusters is not known, one can request
a relatively high number of clusters and then merge them adequately, based on the
obtained term clusters.
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Table 8 The top 6 word clusters resulting from SAEMb on dataset TDT2

C10 C24 C28 C12 C25 C3

Iraq Percent Lewinsky Suharto Nuclear Tobacco

Un Asian Starr Indonesia Pakistan Smoking

Weapons Economic Clinton Jakarta India Industry

Iraqi Financial President Indonesian Test Bill

Inspectors Economy White Habibie Treaty Senate

Baghdad Market House Imf Kashmir Legislation

United Stock Monica Suhartos Sharif Companies

Saddam Crisis Grand Political Islamabad Settlement

Annan Yen Jury Student Conducted Congress

Council Dollar Counsel Reform Five Cigarette

Each cluster is represented by its top 10 terms, sorted according to their popularity

8 Conclusion and future work

We propose dbmovMFs a novel generative co-clustering model tailored for direc-
tional data lying on the surface of a unit hypersphere. The introduction of column
clustering into a mixture of vMF distribution seems to be beneficial from a
number of perspectives: (i) in terms of inference this involves a substantial reduc-
tion of the complexity of the model regarding the number of free parameters to
be estimated and thereby yielding a parsimonious model, (ii) it makes it possi-
ble to exploit the inherent duality between rows and columns which improves
the performance, in terms of document clustering, of vMF-based mixture mod-
els by a noticeable amount, as demonstrated in our experiments, (iii) it alleviates
the high concentration parameter κ issue, by performing an implicitly adaptive
dimensionality reduction at each stage, and finally, (iiii) it has the advantage of
producing directly interpretable clusters and co-clusters, which may also help to
assess the number of clusters when the latter is not known, as emphasized in
Sect. 7.2.8.

The good performances of our algorithms motivate further investigations. For
instance, it would be interesting to propose a way to simultaneously use estimates
obtained by SEMb and EMb/CEMb in an iterative process to overcome therefore the
difficulty of managing parameter w. We could also improve dbmovMFs by con-
sidering a Bayesian formulation that would enable sharing of information between
co-clusters. Future improvements could also involve the development of temporal,
incremental and on-line variants of our algorithms. Such variants would be of great
interest for applications such as collaborative filtering where available information
evolves frequently. Finally, it would be opportune to investigate again the problem
of the number of co-clusters which remains one of the most important challenge in
co-clustering. For instance, an interesting strategy could be to treat the problem of
parameter estimation and assessing the number of co-clusters simultaneously (Wyse
and Friel 2012).
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A. Appendix

A.1 Maximum likelihood estimate

The expectation of the classification log-likelihood of dbmovMFs is given by

E[Lc(Θ|X ,Z)] =
∑

h

z̃.h logαh +
∑

h

z̃.h log(cd(κh)) +
∑

h,i, j

z̃ihw jhκhμhhxi j

(9)

where z̃.h = ∑
i z̃ih . We first maximize the expectation of the classification log-

likelihood (9) with respect to αh , subject to the constraint
∑

h αh = 1. The
corresponding Lagrangian, up to terms which are not function of αh , is given by
L(α, λ) = ∑

h z̃.h logαh + λh(1−∑
h αh). Taking derivatives with respect to αh , we

obtain ∂L(α,λ)
∂αh

= z̃.h
αh

− λ. Setting this derivative to zero leads to z̃.h = λαh . Summing
both sides over all h yields λ = n, thereby the maximizing value of the parameter αh

is given by α̂h = z̃.h
n . In the same manner, to maximize expectation (9) with respect

to μw
h , subject to the constraint ||μw

h || = 1, we form the corresponding Lagrangian by
isolating the terms depending on μw

h , this leads to

L(μ, λ) =
∑

h,i, j

z̃ihw jhκhμhhxi j + λh

⎛

⎝1 −
∑

j

w jhμ
2
hh

⎞

⎠ .

Taking the derivative with respect to μhh , we obtain:

∂L(μ, λ)

∂μh
=

∑

i, j

z̃ihw jhκhxi j − 2λw.hμhh

where w.h = ∑
j w jh . Setting this derivative to zero, we obtain λμhh =

∑
i, j z̃ihw jhκh xi j

2w.h
. Thus, λ2μ2

hh = (
∑

i, j z̃ihw jhκh xi j )2

4w2
.h

. Multiplying both sides by w.h ,

yields:

λ2w.hμ
2
hh = w.h(

∑
i, j z̃ihw jhκh xi j )2

4w2
.h

. Since w.hμ
2
hh = 1, we have λ =

κh

√
w.h(

∑
i, j z̃ihw jh xi j )2

2w.h
or λ = κh

‖rwh ‖
2w.h

where rwh is a d dimensional vector, i.e, let
j ′ = 1, . . . , d, rwh j ′ = rwh = ∑

i, j z̃ihw jh xi j if w jh = 1 and rwh j ′ = 0, otherwise.
Hence, the maximizing value of the parameter μhh is given

by μ̂hh =
∑

i, j z̃ihw jh xi j

‖rwh ‖ =
∑

i, j z̃ihw jh xi j
√

w.h(
∑

i, j z̃ihw jh xi j )2
= ± 1√

w.h
(10)

according to whether rwh = ∑
i, j z̃ihw jh xi j is positive or negative.

Next we concentrate on maximizing Eq. (9), with respect to the concentration
parameters κh , subject to the constraint κh > 0, ∀h. The Lagrangian up to termswhich
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do not contain κh is given by L(κ) = ∑
h z̃.h log(cd(κh)) + ∑

h,i, j z̃ihw jhκhμ̂hhxi j .
Note that, by KKT conditions, the Lagrangian multiplier for the constraint κh > 0
has to be equal to zero. Taking the partial derivative of Eq. (8) with respect to κh , we
obtain

∂L(κ)

∂κh
= z̃.h

c′
d(κh)

cd(κh)
+

∑

i, j

z̃ihw jhμ̂hhxi j .

Setting this derivative equal to zero, leads to:
c′
d (κh)

cd (κh)
= − μ̂hh×∑

i, j z̃ihw jh xi j
z̃.h

. Replacing

μ̂hh by
∑

i, j z̃ihw jh xi j
‖rwh ‖ (see, Eq. 10), we obtain

c′
d (κh)

cd (κh)
= − ‖rwh ‖

z̃.hŵ.h
. Let s = d/2−1, then:

c′
d(κh) = sκs−1

h (2π)s+1 Is(κh) − κs
h(2π)s+1 I ′

s(κh)

(2π)2s+2 I 2s (κh)

= sκs−1
h

(2π)s+1 Is(κh)
− κs

h I
′
s(κh)

(2π)s+1 I 2s (κh)
= cd(κh)

(
s

κh
− I ′

s(κh)

Is(κh)

)

. (11)

Hence, we obtain
−c′

d(κh)

cd(κh)
= Is+1(κh)

Is(κh)
= Id/2(κh)

Id/2−1(κh)
. (12)

The latter Eq. (12), arises from the use of the following recurrence formula
(Abramowitz and Stegun (1964), page 376): κh Is+1(κh) = κh I ′

s(κh) − s Is(κh). Note
that computing the maximizing value κ̂h from Eq. (11) implies to inverse a ratio of
Bessel function, a problem for which no a closed-form solution can be obtained. Thus,
following (Banerjee et al. 2005), we propose to derive an accurate approximation of
the concentration parameter, by using the following continued fraction formula:

Id/2(κh)

Id/2−1(κh)
= 1

d
κh

+ 1
d+2
κh

+···
. (13)

Letting r̄wh = ‖rwh ‖
z̃.hŵ.h

= Id/2(κh)

Id/2−1(κh)
and using Eq. (13), we obtain: 1

r̄wh
≈ d

κh
+ r̄wh which

yields the following approximation: κ̂h = dr̄wh
1−(r̄wh )2

. Finally, Banerjee et al. (2005) have

empirically shown that adding the following correction term
−(r̄wh )3

1−(r̄wh )2
results in a better

approximation of κ̂h , which leads to: κ̂h = dr̄wh −(r̄wh )3

1−(r̄wh )2
.

A.2 Concentration parameters: dbmovMFs versus movMFs

Hereafter, we provide the proofs for Proposition 1 and Theorem 1. The following
proposition is useful and necessary to prove both Proposition 1 and Theorem 1.
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Proposition 3 Let r be a non-zero vector in R
d (i.e., r = (r1, . . . , rd)�, such as

d ≥ 1). Let rd be a vector in R
d , such as all its component are equal to the sum of

elements of r (i.e, rd = ∑d
j=1 r j1 where 1 denotes the constant one vector). Then

‖rd‖
d ≤ ‖r‖ with equality only if all components of r are equal, i.e, (r1 = · · · = rd).

Proof Let d and r+ be two vectors in R
d defined as follows: d = 1√

d
1 and r+ with

r+
j = |r j |, ∀ j ∈ {1, . . . , d}. We have

‖rd‖
d

=
√
d ×

∣
∣
∣
∑

j r j
∣
∣
∣

d
≤ 1√

d
×

∑

j

∣
∣r j

∣
∣ = d�.r+ = ‖d‖‖r+‖ cos(d, r+).

By definition of r+ and d, we have ‖r+‖ = ‖r‖ and ‖d‖ = 1, hence ‖rd‖
d ≤

‖r‖ cos(d, r+). Since both d and r+ are non-zero vectors and lie on the first orthant of
a d-dimensional unit hypersphere, by dividing both sides of the above inequality by

‖r‖, we get 0 ≤ ‖rd‖
d‖r‖ ≤ cos(d, r+) ≤ 1. The right hand side equality holds only

if d and r+ are collinear, thereby all components of r are equal (i.e,r1 = · · · = rd ).
We now prove Proposition 1. ��
Proof of Proposition 1. Based on Proposition 3 and the following inequality: ‖r‖ =
‖p1x1 + · · · + pnxn‖ ≤ ‖p1x1‖ + · · · + ‖pnxn‖ = ∑

i pi , it is straightforward to
verify that

0 ≤ ‖rd‖ ≤ d ×
∑

i

pi

In the following, we prove Theorem 1, which states that for a given row clustering z,
dbmovMFs-based algorithms lead to a concentration parameter that is less or equal to
that of movMFs-based algorithms, for each cluster, and whatever the column partition
w. The following Lemma will be useful in the proof of Theorem 1. ��
Lemma 1 Let a and b be two real numbers in the interval [0, 1] (i.e, 0 ≤ a ≤ 1 and
0 ≤ b ≤ 1). Then for all natural number n ≥ 2 |an − bn| ≤ n |a − b| with equality
only if a = b.

Proof For all natural number n ≥ 2, we can use the following well known remarkable
identity: an − bn = (a − b)

∑n−1
k=0 a

n−1−kbk . Since both a and b are positive, we
have |an − bn| = |a − b| ∑n−1

k=0 a
n−1−kbk as both a and b are in [0, 1], we have

∑n−1
k=0 a

n−1−kbk ≤ n thereby, |an − bn| = |a − b| ∑n−1
k=0 a

n−1−kbk ≤ n |a − b| .
��

Proof of Theorem 1. We first prove that
r̄wh d

1−(r̄wh )
2 ≤ r̄hd

1−(r̄h)2
, which corresponds to

the approximation of the concentration parameters under dbmovMFs and movMFs
without the correction term. Since both r̄wh and r̄h are in ]0, 1[, it is straightforward
to verify that if r̄wh ≤ r̄h then the above inequality is always verified. Thus, in what
follows we aim to prove that r̄wh ≤ r̄h . ��

123



A. Salah, M. Nadif

By definition, we have r̄h = ‖rh‖∑
i z̃ih

where rh = ∑
i z̃ihxi . Now, let’s define r̄

′
h as:

r̄ ′
h = ‖r′

h‖∑
i z̃ih

where r ′
h j =

{
rhj , if w jh = 1
0, otherwise.

r′
h is a w.h dimensional sub vector of rh , it follows from the above definition that

r̄ ′
h ≤ r̄h . On the other hand, r̄wh = ‖rwh ‖

∑
i z̃ih

∑
j ŵ jh

, where rwh denotes a w.h dimensional

vector, each its elements are equal to sum of elements of the hth co-cluster (i.e,
rwh1 = · · · = rwhw.h

= rwh = ∑
i, j z̃ihŵ jh xi j ), similarly we can show that each elements

of rwh are equal to sum of elements of r ′
h (i.e, r

w
h = ∑

j r
′
h j ). Hence using Proposition 3,

where the dimensionality d = w.h , we have
‖rwh ‖

∑
j ŵ jh

≤ ‖r′
h‖. Thus,

r̄wh = ‖rwh ‖
∑

i z̃ih
∑

j ŵ jh
≤ r̄ ′

h = ‖r′
h‖∑
i z̃ih

≤ r̄h, thereby,
r̄wh d

1 − (
r̄wh

)2 ≤ r̄hd

1 − (r̄h)2
.

We now prove that,
r̄wh d−(r̄wh )3

1−(r̄wh )
2 ≤ r̄hd−r̄3h

1−(r̄h)2
.

As r̄wh ≤ r̄h we have
r̄wh d−(r̄wh )3

1−(r̄wh )
2 ≤ r̄wh d−(r̄wh )3

1−(r̄h)2
, then it is sufficient to prove that,

r̄wh d−(r̄wh )3

1−(r̄h)2
≤ r̄hd−r̄3h

1−(r̄h)2
. We have

r̄wh d − (r̄wh )3

1 − (r̄h)2
− r̄hd − r̄3h

1 − (r̄h)2
= d(r̄wh − r̄h) + (r̄3h − (r̄wh )3)

1 − (r̄h)2
.

Based on Lemma 1, for all d ≥ 3 we have
∣
∣r̄3h − (r̄wh )3

∣
∣ ≤ d

∣
∣r̄wh − r̄h

∣
∣ .As r̄wh ≤ r̄h

it is easy to verify that d(r̄wh − r̄h) + (r̄3h − (r̄wh )3) ≤ 0. Based on the fact that

1 − (r̄h)2 > 0 we have
r̄wh d−(r̄wh )3

1−(r̄h)2
≤ r̄hd−r̄3h

1−(r̄h)2
. Hence, using the above inequalities

we get (for all d ≥ 3)

r̄wh d − (r̄wh )3

1 − (
r̄wh

)2 ≤ r̄hd − r̄3h
1 − (r̄h)2

.

A.3 Computational complexity in the worst case

Hereafter, we provide the proof of Proposition 2 (Sect. 6).

Proof (i) The computational bottleneck for hard-dbmovMF is with row, column
assignments and concentration parameters updates.

First, we prove that the complexity of both row and column assignments is O(nz).
Let xi denote the ith row of X (i.e, xi is a d dimensional vector in Sd−1). Assume that
we look for a co-clustering of X into g co-clusters, and let μw

h be the hth centroid,
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characterizing the hth co-cluster. The computational cost of the scalar product (μw
h )T xi

is O(xhi ), where xhi is number of non-zeros entries of xi within the hth column cluster,
this complexity holds thanks to the form ofμw

h , see Eq. (2). Thereby, the complexity of
the assignment of xi is given in O(x∗

i ) (based on O(x1i +· · ·+ xgi )), where x∗
i denotes

the number of non-zeros entries of xi . Therefore, the total cost of one row assignments
step is O(nz). Similarly, we can show that the cost of one column assignments step is
O(nz).

We now prove that the computational cost for updating concentration parameters
is also O(nz). The main computation for updating the hth concentration parameter is
with the computation of rwh . The computational cost of the latter term is given in O(x∗

h ),
where x∗

h the number of non-zeros entries in the hth co-cluster. Thus, the complexity
for updating all concentrations parameters is O(nz), based on O(x∗

1 + · · · + x∗
g)

and the fact that at most all non-zeros entries in the matrix X are contained in the g
diagonal co-clusters. Thereby, the total computational complexity of hard-dbmovMF
is O(i t · nz).

��
Proof (ii) As for hard-dbmovMF it is easy to verify that the total cost of row assign-
ments and concentration parameters updates is given in O(i t · nz) for soft-dbmovMF.
Now we prove that in contrast to hard-dbmovMF the computational cost of col-
umn assignments for soft-dbmovMF is O(i t · g · nz). The computational bottleneck
for column assignment step of soft-dbmovMF is with the terms vh j ← ∑

i z̃ih xi j ,
h ∈ {1, . . . , g}, j ∈ {1, . . . , J }. The cost of vh j is given in O(x∗

j ), where x∗
j is the

number of non-zeros entries in the jth column. During the column assignment step
for each cluster h and column j we compute vh j , hence the computational cost of this
step is given in O(g · nz). Therefore, the total computational cost of soft-dbmovMF is
O(i t · g · nz), based on O(i t · nz · (g + 1)). ��
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